USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   Sights

Comparison Hawke Vantage IR 3-12x50 vs Hawke Airmax 30 SF 3-12x50 AMX IR

Add to comparison
Hawke Vantage IR 3-12x50
Hawke Airmax 30 SF 3-12x50 AMX IR
Hawke Vantage IR 3-12x50Hawke Airmax 30 SF 3-12x50 AMX IR
Outdated ProductOutdated Product
TOP sellers
Typeopticoptic
Designenclosedenclosed
Optical characteristics
Magnification3 – 12 x3 – 12 x
Magnification adjustment
Lens diameter50 mm50 mm
Exit pupil diameter16.7 – 4.2 mm16.7 – 4.2 mm
Offset of the exit pupil89 mm102 mm
Field of view at 100 m10.5 – 2.6 m10.3 – 2.8 m
Twilight factor12.212.2
Brightness277.8277.8
Measuring units of the sightMOAMOA
Adjustment division value0.25 MOA0.25 MOA
Parallax adjustmentside drum (SF)
Diopter adjustment
Zero setting
Lens coatingfull multilayer enlightenmentfull multilayer enlightenment
Aiming mark
Reticlein the 2nd focal plane (SFP)
Reticle type
half cross /L4A Dot/
 
 
rangefinder /AMX/
Aiming mark illumination
Backlight brightness adjustments
 /5 levels for each colour/
Selection of aiming mark colour
 /red, green/
More features
More features
dust-, waterproof
shockproof
nitrogen filled /nitrogen/
dust-, waterproof
shockproof
nitrogen filled /nitrogen/
Elevation drumenclosedopen
Power source
Power sourceCR2032CR2032
General
Weapon compatibilityrifles and shotguns
Mounting ring diameter30 mm30 mm
Materialmetal
Country of originUnited KingdomUnited Kingdom
Sight length356 mm346 mm
Weight606 g780 g
Added to E-Catalogaugust 2016august 2016

Offset of the exit pupil

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the sight is planned to be used simultaneously with glasses — after all, in such cases it is not possible to bring the eyepiece close to the eye, and it must be at some distance from the glasses so as not to hit the glass due to recoil.

Field of view at 100 m

The diameter of the area visible through the sight from a distance of 100 m — in other words, the largest distance between two points at which they can be seen simultaneously from this distance. It is also called "linear field of view". This indicator is more convenient for many users than the angular field of view (the angle between the lines connecting the lens and the extreme points of the visible image) — it very clearly describes the capabilities of the device.

In sights with magnification adjustment (see above), both the entire range of width — from maximum to minimum — or only one value of this parameter can be indicated. In the latter case, the largest width of the field of view is usually taken, at the minimum magnification.

Parallax adjustment

The possibility of manual adjustment of the sight from parallax, by the user himself. For this purpose, the design provides a corresponding regulator.

Parallax in this case is a phenomenon when, when the eye deviates from the optical axis of the sight (from the center of the eyepiece), the aiming mark visible to the shooter also shifts, while the sight itself remains motionless. As a result, if the eye is not exactly in the center, the visible position of the mark does not coincide with the actual aiming point. This phenomenon is especially pronounced in optical sights (see "Type"), and many collimators are also subject to it, although not to the same extent (but "night vision" and thermal imagers are free of this drawback, since the mark is displayed on the built-in display).

To eliminate this phenomenon, a specific adjustment is used - parallax adjustment. It is usually done right at the factory. However, the sight can be adjusted from parallax only for a certain distance, and with significant deviations from this distance (more than 30% downwards or 60% upwards), this effect begins to manifest itself again. It can be compensated for by an ideal insert ("eye strictly in the center"), but even for experienced shooters this can be difficult, especially when shooting standing, offhand and in other uncomfortable positions. In light of this, some models also provide manual parallax adjustment - a regulator that allows you...to set the adjustment distance at the user's discretion. In addition to the situations described above, this function will be especially useful for novice users, as well as for high-precision shooting at long distances.

Optical sights with parallax adjustment> can be equipped with a wide ring on the AO (Adjustable Objective) lens or a drum on the SF (Side Focusing) control unit, on which additional accessories for fine-tuning the focus in the form of wheels are installed.

Zero setting

The scope has a zero adjustment function. This function is used during the initial sighting of optical sights (see "Type") for a specific rifle and ammunition, and later it greatly simplifies the work with vertical and horizontal corrections. Its essence is as follows

The process of zeroing in optics, roughly speaking, is the selection of such a position of the drums, in which at a distance of 100 m the sight ensures a clear hit at the aiming point (taking into account the spread of the weapon, of course). Such settings are taken as zero, it is from them that all further corrections are counted. However, the scales of the drums already show certain values by the time they are brought to this position — because of this, when you subsequently enter corrections, you can get confused in the number of clicks, make a mistake when returning the sight to its original settings, etc. The zero setting solves the problem: after zeroing, it is possible to rearrange the scales of the drums to the zero position without knocking down the settings of the adjusted sight. Thus, all subsequent corrections of the hands will be able to count from zero values on the scale, and to return to the original settings, it is enough to return the drums to the same zeros.

The specific method and features of such a setting may be different, usually, they are described in detail in the instruction manual. Here we note that this function is highly desir...able for sights used in high-precision (sniper) shooting, where you have to work a lot and often with amendments.

Reticle

The location of the reticle in the optical sight (see "Type").

Such a grid can be installed either in the first focal plane, FFP(roughly speaking, in the lens area), or in the second, SFP(in the eyepiece area). At the same time, for sights with a fixed magnification, the difference between these options is only in price, so they use only the simpler and cheaper SFP. But in models with multiplicity adjustment, this parameter directly affects the application features, and we will analyze this difference in more detail:

— In the 1st focal plane (FFP). The key advantage of reticles in the first focal plane is that their apparent size also changes in direct proportion with a change in magnification. In fact, this means that the angular dimensions of the individual mesh elements remain the same regardless of the set magnification. That is, for example, if a distance of 1 MRAD is claimed between two neighboring points, then it will be 1 MRAD in the entire range of multiplicity adjustment. This means that you can work with the grid for measuring distances and taking corrections according to the same rules, regardless of the selected degree of increase. Thus, FFP sights are much more convenient and easier to use than SFP. On the other hand, such models are noticeably more complex and expensive; and many hunting reticles — for example, a duplex or a classic cross (see "Reticle Type") — it makes...no sense at all to install in the first focal plane. In light of all this, this option is relatively rare and only in mid-range and top-level models designed for high-precision shooting.

— In the 2nd focal plane (SFP). The most common reticle placement option, including variable magnification sights. Such popularity is primarily due to the simplicity of design and low cost. However, the reverse side of these advantages are additional difficulties when using goniometric mesh elements. The fact is that in SFP sights, the apparent size of such elements remains unchanged when the magnification changes, which means that the dimensions of individual parts at different magnifications will correspond to different angles. More precisely, the angular dimensions in such systems change in inverse proportion to the multiplicity: for example, if at a multiplicity of 5x the distance between two adjacent points is 6 MOA, then at 15x it will decrease to 2 MOA. Thus, the “true” angular size indicated in the characteristics, the marking elements have only at a strictly defined multiplicity, in other cases, this size must be recalculated using special formulas. At the same time, it is worth noting that if the grid does not have special goniometric elements, then this disadvantage becomes practically irrelevant for it; examples are hunting nets of the "half-cross" type (traditional, not "stump") and "cross with a circle" (see "Net type").

Reticle type

The type of aiming mark (reticle) provided in the device. There are models for which several options are indicated at once: this implies the possibility of switching between them.

As for specific varieties, in collimators, all brands have a common specificity - they should provide the convenience of quick aiming at relatively short distances. But the reticles of optical and other similar sights can be divided into hunting and tactical (sniper) sights. The former are relatively simple and have a minimum of additional elements, as they are designed for short distances and relatively large targets; and the latter are designed for high-precision shooting, military and police use, and therefore must be supplemented with various elements for measuring angles and taking corrections on the go, including between shots.

Among the specific types of grids most popular in our time are the cross with divisions, BDC, duplex, cross, half-cross, cross with a dot, cross with a circle, herringbone, rangefinder, dot, circle with a dot and circle with 2 points. Here are th...e main features of each:

— Cross with divisions. One of the most popular types of "tactical" reticles used in optical sights. The key element is the crosshair, on the lines of which additional dots are applied. The distance between the points corresponds to a strictly defined angular size; initially it was 1 MRAD (1 "mil", hence the name), however, in modern sights, other values \u200b\u200bcan be found, they should be specified according to the instructions. In addition, such grids can differ in the number of points, the presence of thickening on the lines (as in the duplexes described below), etc. Be that as it may, such a grid is very convenient for estimating distances and making corrections on the fly, many professional shooters consider it almost ideal for high-precision shooting, including at long distances, besides, the original cross with divisions (Mil-Dot) is widely used by military and police snipers around the world.
We also note that there is also a collimator variety of "mildots" - in this case, the grid looks like a circle with a dot in the middle and several dots below it, with an interval of the same 1 MRAD. However, when using collimators, the real need for making vertical corrections rarely arises, and this option is not widely used.

- Duplex. Reticles for optical and night sights (see "Type"), which look like a classic crosshair with different line thicknesses: they are thin in the center, and noticeably thicker near the edges. The meaning of this combination is that thin lines do not “clutter up” the field of view at the aiming point, and thick lines remain visible even under adverse conditions (for example, at dusk) and allow you to aim at least approximately. In addition, the thickness of large lines and the distance between their edges can correspond to well-defined angles, which allows some of these sights to be used even as simple goniometers. However, these possibilities are very limited, and in general, "duplexes" are classic hunting nets.

- Half cross. Hunting net, the main elements of which are T-shaped. One of the varieties of semi-crosses - "German grid", it is also "stump" - consists of a vertical line from the edge to the center of the sight and two horizontal lines that do not reach it; the aiming point corresponds to the upper point of the central "stump", and the thickness of the lines and the distance between them can be specified in the documentation - this allows you to carry out the simplest measurements of angles. A more modern version of the half-cross is the crosshair, in which one line (from the center to the top edge) is much thinner than the rest, or even absent altogether.

- Dot. In its pure form, the dot is used exclusively in collimator sights (see "Type"). This is an extremely convenient option for such devices: there are no unnecessary details in the field of view of the shooter, only a mark that clearly shows exactly where the weapon is aimed - more is often not required when using collimators. The disadvantages of the dot in comparison with other marks in the sights of this type include less visibility, especially in bright ambient light. However, many sights allow you to set a fairly high brightness of the mark, and sometimes even increase its size, increasing visibility. Also note that for a point, the angular size can be specified, which can be useful for quick estimation of distances.
In addition, the dot can also be used in optical and night sights, but in such cases it is usually used as an addition to another scale - for example, it additionally highlights the intersection of lines in a semi-cross.

— Circle with a dot. Another type of marks, used in collimators as the main one, and in other types of sights - as an addition to a crosshair or other more traditional grid. However, the latter is rare, so let's focus on the first option. Compared to another popular "collimator" mark - a dot - the circle covers more visible space, however, it is very noticeable and often turns out to be more convenient when shooting offhand or sharply turning the weapon to the side. In addition, for both the circle and the dot, it often indicates the exact angular size, which gives extended (compared to the usual dot) possibilities for using the aiming mark as the simplest goniometric (rangefinding) scale.

- Circle with 2 dots. A variation of the circle with a point described on top, having a second, additional point - usually below the first, at a strictly defined angular distance from it. This expands the possibilities for using the sight as an impromptu rangefinder, and also allows you to "on the move" take an amendment when shooting at long distances - just aim at the second, lower point. However, such opportunities for collimators are extremely rarely required, so this option has not received much distribution either.

- Cross. Features of this type of brand depend on the type of sights in question - optical / night or collimator (see "Type"). In classical optics, a cross is the simplest crosshair of thin lines of the same thickness. Naturally, in terms of general specialization, such reticles are hunting, but they are also found in a fairly advanced variety of sights - sports models for benchrest (shooting from a machine gun at maximum range and accuracy). The convenience of the cross in such an application lies in the fact that the lines have a minimum thickness and practically do not block the view. In nightlights, this type of grid is usually one of several options available to choose from. But in collimators, the cross is in many ways similar to a circle with a dot - it is provided as one of the large, well-marked marks with a clearly defined angular size.

- Cross with a dot. A grid in the form of a crosshair of two lines (as a rule, quite thin), at the intersection of which a clearly visible point is applied. It is in this form, as a rule, that is used in collimator and other types of sights. In the first case, such a stamp is actually a slightly modified version of the usual cross (see on top). And in optics, the presence of a point allows you to additionally highlight the crosshairs, which is convenient in some situations; the general purpose of such sights is, of course, hunting.

- A cross with a circle. Stamp in the form of a cross, complemented by a circle. It can also be used in different types of sights and has its own specialization everywhere. In classical optics, such a grid usually has a hunting purpose, although there are also varieties with additional marks that expand the "tactical" functions. And even in the absence of such marks in the characteristics, the angular size of the circle is usually specified, which provides additional opportunities for impromptu measurement of distances. We also note that the cross itself can be both ordinary and duplex (see on top). The situation is similar in night sights, however, there a cross with a circle is usually only one of the available mark options. As for the collimators, they can use both a full-fledged crosshair in a circle, and a ring with “rays” protruding from it; in any case, such a mark is more noticeable than an ordinary cross.

— BDC. This reticle got its name from the English phrase Bullet Drop Compensation, which translates as “bullet drop compensation”. The BDC ballistic reticle allows for range correction based on the bullet's trajectory. It is calibrated for a specific ammunition and sharpened for quick aiming at various distances using the same type of bullets. Distance markers in a ballistic reticle are hash marks, circles, or dots. The main sign of their placement is that the vertical markings have different gaps, increasing towards the bottom. An additional distance scale is often placed in such grids on the "six" shoulder. In addition, the ammunition for which the reticle is calibrated is usually indicated (caliber, bullet weight, weight).

- Christmas tree. Informative reticle resembling a Christmas tree in its structure. Actually, this is where the name of this type of grid came from. Each array of dots on its "six o'clock" arm is longer than the previous one - the marks increase in width when viewed from top to bottom from the central crosshair. These markers are used to correct for wind drift, which is extremely important when conducting aimed fire at long distances. The most common herringbone reticle is found in hunting hybrids, tactical sights, and military rifle scopes.

- Rangefinder. This type includes all grids that do not belong to any of the types described on top and provide for special markings for measuring angles and distances. The specific design of such markings may be different, but the general principle of operation is the same everywhere: rangefinder marks allow you to determine the angular size of a visible object, and if the linear size of this object is known, you can easily estimate the distance to it (at least approximately). Each type of rangefinder reticle has its own rules for use.

Selection of aiming mark colour

The ability to change the colour of the aiming mark, more precisely, the colour with which it is highlighted (see above). This adjustment performs both an aesthetic and a practical function — against different backgrounds, some colours stand out more than others, and choosing the optimal colour allows you to make the brand as noticeable as possible.

Elevation drum

The design of the drum (drums) for entering corrections, provided in the sight.

— Closed. Drums closed with threaded caps or other protective devices. This design does not allow you to quickly, on the go, make adjustments, but the regulators are maximally protected from foreign objects, and the likelihood of knocking down the settings in case of accidental contact with such an object is reduced to almost zero. This makes closed turrets perfect for scopes that are adjusted once, at initial zeroing, and then used at fixed settings; collimators and hunting optics for relatively short distances (up to 300 m) can be cited as an example.

Open. Drums that do not have special protection — thus, you can turn such a drum immediately, only by stretching out your hand to it. Such regulators allow you to make adjustments “on the fly”, literally after each shot, making them very convenient for high-precision shooting, especially under constantly changing conditions; in particular, it is the open design that professional snipers use. As for the shortcomings, one can come across allegations that in case of accidental contact with a foreign object, the drum may turn, knocking down the settings. However, in modern sights, manufacturers take this possibility into account and prevent such cases — for example, due to a tight rotation mechanism or special drum fixation systems.

Weapon compatibility

The weapon class that this scope can be used with.

Different classes of weapons differ in the energy of the shot and, accordingly, the recoil force that the sight must endure without consequences. It is the maximum allowable energy of the shot (muzzle energy) that in this case is the main criterion for classifying the sight into one of the categories: light pneumatics, rifles and shotguns, large caliber. It is worth saying that such a division is somewhat arbitrary — see details in separate paragraphs; here is their detailed description:

— Lightweight pneumatics. Sights designed for weapons that practically do not give recoil — such as air PCP rifles, spring-piston “breaks” with muzzle energy up to 7.5 J, carbines chambered for Flaubert, as well as airsoft drives. Such models are definitely not suitable for firearms: they do not tolerate even the recoil from small-caliber rifles, not to mention more serious use. And even pneumatics have their limitations — in particular, powerful (more than 7.5 J) spring-piston models give significant returns with strong vibrations, and in pistols with the Blow-back system, noticeable concussions occur not because of the shot itself, but from -for the work of automation. So it is better to equip these types of weapons with more durable and reliable sights.

— Rifles and shotguns. Sights that can be used with...rifles of small and medium calibers, as well as smoothbore weapons (shotguns). They have a solid construction that allows them to endure rather strong recoil and accompanying vibrations without consequences, but the specific restriction on the allowable muzzle energy (and, accordingly, the calibers and ammunition used) may be different. However, scopes in this category are usually able to safely carry at least 2500 J — this is enough for rifled calibers 5.45x39, 7.62x39 and .223, as well as for 12-gauge rifle cartridges with a standard weight of gunpowder. And in many models, the maximum allowable energy can reach 3500 J and even 4000 J (the smallest values \u200b\u200bnecessary for full-fledged use with .308 and 7.62x54R calibers, respectively). At the same time, for reinforced magnum ammunition, as well as for some powerful (though not large) calibers, such a sight may still not be enough.

— Large-caliber. The most durable and reliable sights, designed for muzzle energy of 4000 J and above. Because of this, they can be used even with large-caliber firearms, as well as with some powerful calibers that are not formally large — for example, .300 Win and .338 Lapua Magnum. The specific restriction on muzzle energy, again, may be different, but if you are looking for a sight for a caliber more powerful than 7.62x54R or for reinforced rifle ammunition like 12x76, you should definitely pay attention to this category.

Separately, it is worth noting that “firearm” sights, even quite durable and reliable, are not recommended to be installed on pneumatics with a spring-piston mechanism or a gas spring. The fact is that such rifles have a specific recoil, directed forward rather than backward, moreover, giving sharp vibrations in different directions; and although the force of such recoil is low, it can still adversely affect the sight, which was not originally designed for it.