USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   Sights

Comparison Barska Blackhawk 6-24x50 AO IR vs Konus KonusPro Plus 6X-24X50

Add to comparison
Barska Blackhawk 6-24x50 AO IR
Konus KonusPro Plus 6X-24X50
Barska Blackhawk 6-24x50 AO IRKonus KonusPro Plus 6X-24X50
from $204.12 up to $211.68
Outdated Product
Compare prices 3
TOP sellers
Typeopticoptic
Designenclosedenclosed
Optical characteristics
Magnification6 – 24 x6 – 24 x
Magnification adjustment
Lens diameter50 mm50 mm
Exit pupil diameter8.3– 2.1 mm8.3 – 2.1 mm
Offset of the exit pupil102 – 77 mm89 mm
Field of view at 100 m4.2 – 1.25 m5.92 – 1.62 m
Twilight factor17.317.3
Brightness69.469.4
Measuring units of the sightMOAMOA
Adjustment division value0.25 MOA0.125 MOA
Parallax adjustmentbody ring (AO)body ring (AO)
Diopter adjustment
Zero setting
Lens coatingfull multilayer enlightenmentfull multilayer enlightenment
Aiming mark
Reticlein the 2nd focal plane (SFP)in the 2nd focal plane (SFP)
Reticle type
 
reticle with graduations
cross with dot /Fine Crosshair Center Dot/
 
Reticle measuring unitsMOA
Aiming mark illumination
Backlight brightness adjustments
 /5 levels for each colour/
 /5 levels for each colour/
Selection of aiming mark colour
 /red, green/
 /red, blue/
More features
More features
dust-, waterproof
shockproof
nitrogen filled /nitrogen/
dust-, waterproof
shockproof
nitrogen filled
Elevation drumopenenclosed
Power source
Power sourceCR2032CR2032
General
Weapon compatibilityrifles and shotgunsrifles and shotguns
Fastening type included
on Weaver/Picatinny rail
 
Mounting ring diameter25.4 mm25.4 mm
Materialmetalmetal
Country of originUSAUSA
Sight length381 mm408 mm
Weight573 g730 g
Added to E-Catalogaugust 2016september 2014

Exit pupil diameter

The diameter of the exit pupil created by the optical system of the sight.

The exit pupil is called the projection of the front lens of the lens, built by the optics in the region of the eyepiece; this image can be observed in the form of a characteristic light circle, if you look into the eyepiece not close, but from a distance of 30 – 40 cm. The diameter of this circle can be calculated by dividing the lens diameter by the multiplicity (see above). For example, an 8x40 model would have a pupil diameter of 40/8=5mm. This indicator determines the overall aperture of the device and, accordingly, the image quality in low light: the larger the pupil diameter, the brighter the “picture” will be (of course, with the same lens quality, because it also affects the brightness).

In addition, it is believed that the diameter of the exit pupil should be no less than that of the pupil of the human eye — and the size of the latter can vary. So, in daylight, the pupil in the eye has a size of 2-3 mm, and in the dark — 7-8 mm in adolescents and adults, and about 5 mm in the elderly. This point should be taken into account when choosing a model for specific conditions: after all, high-aperture optics are expensive, and it hardly makes sense to overpay for a large pupil if you need a scope exclusively for daytime use.

Offset of the exit pupil

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the sight is planned to be used simultaneously with glasses — after all, in such cases it is not possible to bring the eyepiece close to the eye, and it must be at some distance from the glasses so as not to hit the glass due to recoil.

Field of view at 100 m

The diameter of the area visible through the sight from a distance of 100 m — in other words, the largest distance between two points at which they can be seen simultaneously from this distance. It is also called "linear field of view". This indicator is more convenient for many users than the angular field of view (the angle between the lines connecting the lens and the extreme points of the visible image) — it very clearly describes the capabilities of the device.

In sights with magnification adjustment (see above), both the entire range of width — from maximum to minimum — or only one value of this parameter can be indicated. In the latter case, the largest width of the field of view is usually taken, at the minimum magnification.

Adjustment division value

The division value of the turrets used in the sight to enter corrections.

The increment value for the correction turret is the angle that the point of impact shifts when rotated by 1 click (“click”). In this case, this angle is indicated in MOA — minutes of arc. For more information about this unit, see "Measuring units of the sight"; and the lower the division value, the more accurately you can set up the sight initially and make corrections in the future. For example, if this indicator is 0.5 MOA — each click will shift the point of impact by about 1.46 cm for every 100 m of distance (that is, 2.91 cm at a distance of 200 m, 4.4 cm at 300 m and so on); and 0.25 MOA will already give only 7.3 mm per click for every 100 m.

The smaller the step and the more accurate the adjustment system, the more expensive it is. Therefore, when choosing, it is worth taking into account the features of the planned application — first of all, the size of the targets and the distance to them; detailed recommendations on this matter are in various manuals on shooting. If we talk about specific values, then the mentioned 0.5 (1/2) MOA are typical mainly for inexpensive and medium scopes, 0.25 (1/4) MOA is a pretty good indicator, and the advanced optics itself allows adjustment in increments of 0.125 (1/8) MOA.

Zero setting

The scope has a zero adjustment function. This function is used during the initial sighting of optical sights (see "Type") for a specific rifle and ammunition, and later it greatly simplifies the work with vertical and horizontal corrections. Its essence is as follows

The process of zeroing in optics, roughly speaking, is the selection of such a position of the drums, in which at a distance of 100 m the sight ensures a clear hit at the aiming point (taking into account the spread of the weapon, of course). Such settings are taken as zero, it is from them that all further corrections are counted. However, the scales of the drums already show certain values by the time they are brought to this position — because of this, when you subsequently enter corrections, you can get confused in the number of clicks, make a mistake when returning the sight to its original settings, etc. The zero setting solves the problem: after zeroing, it is possible to rearrange the scales of the drums to the zero position without knocking down the settings of the adjusted sight. Thus, all subsequent corrections of the hands will be able to count from zero values on the scale, and to return to the original settings, it is enough to return the drums to the same zeros.

The specific method and features of such a setting may be different, usually, they are described in detail in the instruction manual. Here we note that this function is highly desir...able for sights used in high-precision (sniper) shooting, where you have to work a lot and often with amendments.

Reticle type

The type of aiming mark (reticle) provided in the device. There are models for which several options are indicated at once: this implies the possibility of switching between them.

As for specific varieties, in collimators, all brands have a common specificity - they should provide the convenience of quick aiming at relatively short distances. But the reticles of optical and other similar sights can be divided into hunting and tactical (sniper) sights. The former are relatively simple and have a minimum of additional elements, as they are designed for short distances and relatively large targets; and the latter are designed for high-precision shooting, military and police use, and therefore must be supplemented with various elements for measuring angles and taking corrections on the go, including between shots.

Among the specific types of grids most popular in our time are the cross with divisions, BDC, duplex, cross, half-cross, cross with a dot, cross with a circle, herringbone, rangefinder, dot, circle with a dot and circle with 2 points. Here are th...e main features of each:

— Cross with divisions. One of the most popular types of "tactical" reticles used in optical sights. The key element is the crosshair, on the lines of which additional dots are applied. The distance between the points corresponds to a strictly defined angular size; initially it was 1 MRAD (1 "mil", hence the name), however, in modern sights, other values \u200b\u200bcan be found, they should be specified according to the instructions. In addition, such grids can differ in the number of points, the presence of thickening on the lines (as in the duplexes described below), etc. Be that as it may, such a grid is very convenient for estimating distances and making corrections on the fly, many professional shooters consider it almost ideal for high-precision shooting, including at long distances, besides, the original cross with divisions (Mil-Dot) is widely used by military and police snipers around the world.
We also note that there is also a collimator variety of "mildots" - in this case, the grid looks like a circle with a dot in the middle and several dots below it, with an interval of the same 1 MRAD. However, when using collimators, the real need for making vertical corrections rarely arises, and this option is not widely used.

- Duplex. Reticles for optical and night sights (see "Type"), which look like a classic crosshair with different line thicknesses: they are thin in the center, and noticeably thicker near the edges. The meaning of this combination is that thin lines do not “clutter up” the field of view at the aiming point, and thick lines remain visible even under adverse conditions (for example, at dusk) and allow you to aim at least approximately. In addition, the thickness of large lines and the distance between their edges can correspond to well-defined angles, which allows some of these sights to be used even as simple goniometers. However, these possibilities are very limited, and in general, "duplexes" are classic hunting nets.

- Half cross. Hunting net, the main elements of which are T-shaped. One of the varieties of semi-crosses - "German grid", it is also "stump" - consists of a vertical line from the edge to the center of the sight and two horizontal lines that do not reach it; the aiming point corresponds to the upper point of the central "stump", and the thickness of the lines and the distance between them can be specified in the documentation - this allows you to carry out the simplest measurements of angles. A more modern version of the half-cross is the crosshair, in which one line (from the center to the top edge) is much thinner than the rest, or even absent altogether.

- Dot. In its pure form, the dot is used exclusively in collimator sights (see "Type"). This is an extremely convenient option for such devices: there are no unnecessary details in the field of view of the shooter, only a mark that clearly shows exactly where the weapon is aimed - more is often not required when using collimators. The disadvantages of the dot in comparison with other marks in the sights of this type include less visibility, especially in bright ambient light. However, many sights allow you to set a fairly high brightness of the mark, and sometimes even increase its size, increasing visibility. Also note that for a point, the angular size can be specified, which can be useful for quick estimation of distances.
In addition, the dot can also be used in optical and night sights, but in such cases it is usually used as an addition to another scale - for example, it additionally highlights the intersection of lines in a semi-cross.

— Circle with a dot. Another type of marks, used in collimators as the main one, and in other types of sights - as an addition to a crosshair or other more traditional grid. However, the latter is rare, so let's focus on the first option. Compared to another popular "collimator" mark - a dot - the circle covers more visible space, however, it is very noticeable and often turns out to be more convenient when shooting offhand or sharply turning the weapon to the side. In addition, for both the circle and the dot, it often indicates the exact angular size, which gives extended (compared to the usual dot) possibilities for using the aiming mark as the simplest goniometric (rangefinding) scale.

- Circle with 2 dots. A variation of the circle with a point described on top, having a second, additional point - usually below the first, at a strictly defined angular distance from it. This expands the possibilities for using the sight as an impromptu rangefinder, and also allows you to "on the move" take an amendment when shooting at long distances - just aim at the second, lower point. However, such opportunities for collimators are extremely rarely required, so this option has not received much distribution either.

- Cross. Features of this type of brand depend on the type of sights in question - optical / night or collimator (see "Type"). In classical optics, a cross is the simplest crosshair of thin lines of the same thickness. Naturally, in terms of general specialization, such reticles are hunting, but they are also found in a fairly advanced variety of sights - sports models for benchrest (shooting from a machine gun at maximum range and accuracy). The convenience of the cross in such an application lies in the fact that the lines have a minimum thickness and practically do not block the view. In nightlights, this type of grid is usually one of several options available to choose from. But in collimators, the cross is in many ways similar to a circle with a dot - it is provided as one of the large, well-marked marks with a clearly defined angular size.

- Cross with a dot. A grid in the form of a crosshair of two lines (as a rule, quite thin), at the intersection of which a clearly visible point is applied. It is in this form, as a rule, that is used in collimator and other types of sights. In the first case, such a stamp is actually a slightly modified version of the usual cross (see on top). And in optics, the presence of a point allows you to additionally highlight the crosshairs, which is convenient in some situations; the general purpose of such sights is, of course, hunting.

- A cross with a circle. Stamp in the form of a cross, complemented by a circle. It can also be used in different types of sights and has its own specialization everywhere. In classical optics, such a grid usually has a hunting purpose, although there are also varieties with additional marks that expand the "tactical" functions. And even in the absence of such marks in the characteristics, the angular size of the circle is usually specified, which provides additional opportunities for impromptu measurement of distances. We also note that the cross itself can be both ordinary and duplex (see on top). The situation is similar in night sights, however, there a cross with a circle is usually only one of the available mark options. As for the collimators, they can use both a full-fledged crosshair in a circle, and a ring with “rays” protruding from it; in any case, such a mark is more noticeable than an ordinary cross.

— BDC. This reticle got its name from the English phrase Bullet Drop Compensation, which translates as “bullet drop compensation”. The BDC ballistic reticle allows for range correction based on the bullet's trajectory. It is calibrated for a specific ammunition and sharpened for quick aiming at various distances using the same type of bullets. Distance markers in a ballistic reticle are hash marks, circles, or dots. The main sign of their placement is that the vertical markings have different gaps, increasing towards the bottom. An additional distance scale is often placed in such grids on the "six" shoulder. In addition, the ammunition for which the reticle is calibrated is usually indicated (caliber, bullet weight, weight).

- Christmas tree. Informative reticle resembling a Christmas tree in its structure. Actually, this is where the name of this type of grid came from. Each array of dots on its "six o'clock" arm is longer than the previous one - the marks increase in width when viewed from top to bottom from the central crosshair. These markers are used to correct for wind drift, which is extremely important when conducting aimed fire at long distances. The most common herringbone reticle is found in hunting hybrids, tactical sights, and military rifle scopes.

- Rangefinder. This type includes all grids that do not belong to any of the types described on top and provide for special markings for measuring angles and distances. The specific design of such markings may be different, but the general principle of operation is the same everywhere: rangefinder marks allow you to determine the angular size of a visible object, and if the linear size of this object is known, you can easily estimate the distance to it (at least approximately). Each type of rangefinder reticle has its own rules for use.

Reticle measuring units

Units of measurement that are used in the marking of goniometric elements of the reticle. In our time, there are two main units: - MOA. The abbreviation for minute of arc is 1/60 of a degree. Initially, this unit is associated with the English system of measures and is convenient primarily for calculations in yards and inches: at a distance of 100 yards, an angle of 1 MOA corresponds to a linear dimension of approximately 1 inch. In the more familiar metric system for us, this gives 2.91 cm at a distance of 100 m. We also note that this unit is a kind of accuracy standard: it is believed that a full-fledged sniper rifle should give a spread of no more than 1 MOA.

MRAD. Conventional designation miradian - an angle of one thousandth of a radian (approximately 0.06 °). Also in the jargon of snipers, this unit is called "thousandth", or "mil". It is already tied to the metric system: at a distance of 100 m, an angle of 1 MRAD corresponds to a linear size of 10 cm (approximately 3.5 times greater than 1 MOA).

The choice for this indicator largely depends on the personal preferences of the shooter. We also note that inconsistencies are often found in low-cost sights: their drums are marked on the MOA scale, and the reticle is in MRAD units.

Elevation drum

The design of the drum (drums) for entering corrections, provided in the sight.

— Closed. Drums closed with threaded caps or other protective devices. This design does not allow you to quickly, on the go, make adjustments, but the regulators are maximally protected from foreign objects, and the likelihood of knocking down the settings in case of accidental contact with such an object is reduced to almost zero. This makes closed turrets perfect for scopes that are adjusted once, at initial zeroing, and then used at fixed settings; collimators and hunting optics for relatively short distances (up to 300 m) can be cited as an example.

Open. Drums that do not have special protection — thus, you can turn such a drum immediately, only by stretching out your hand to it. Such regulators allow you to make adjustments “on the fly”, literally after each shot, making them very convenient for high-precision shooting, especially under constantly changing conditions; in particular, it is the open design that professional snipers use. As for the shortcomings, one can come across allegations that in case of accidental contact with a foreign object, the drum may turn, knocking down the settings. However, in modern sights, manufacturers take this possibility into account and prevent such cases — for example, due to a tight rotation mechanism or special drum fixation systems.

Fastening type included

The type of mount supplied with the scope.

For normal mounting on a weapon, this mount must match the type of seat for the scope. The most popular types of mounts nowadays are on the Weaver / Picatinny rail and on the dovetail ; branded latches are noticeably less common, and some sights are supplied without mounts at all — this allows you to choose the option at your discretion. Here is a detailed description of specific options:

— On the Weaver / Picatinny rail. Fastening on a standard bar (“rail”) Weaver or Picatinny rail. It is considered the Western standard for installing a weapon body kit, but nowadays it is widely used around the world. It is worth noting that these types of slats, although similar in design, are not the same. They both have a T-shaped profile and transverse slots that allow you to securely fix the installed accessory in the chosen place, but differ in the size and location of these slots: they are wider in Picatinny rails and have a standard distance between centers. In fact, this leads to the fact that accessories for Weaver rails can easily fit on Picatinny rails, but not vice versa. In addition, Picatinny is considered more of a military standard, and civilian weapons are equipped mainly with Weaver rails. Thus, most of the complete rail mounts found among modern sights are designed specifi...cally for the Weaver rail, as it is more common and universal. However, exceptions are possible, so this nuance needs to be specified separately.

— "Dovetail". The seat of this type has a cross-sectional view of an inverted trapezoid, and the mount provides protrusions on both sides, which, when the sight is installed, “cover” this trapezoid. This type of mount is found mainly in air and sporting rifles, as well as in hunting weapons of a classic design. In the latter case, this choice is also due to aesthetic considerations — these mounts look neater than the gear "rails" of Weaver and Picatinny rails.

— Firm. Various specific fastenings not related to the standards described above. Often they are made not just for the products of a particular brand, but also for strictly defined models of weapons; one of the characteristic examples is the original seat on the high-end "sniper" Blaser R93. Branded devices can have a rather original design — for example, in some collimators for shotguns, a plate is used that is fixed between the butt and the receiver. In general, due to limitations in application, such fasteners are usually provided not as the only option, but as one of the options, in addition to the bar and/or dovetail.

Separately, it is worth touching on situations where several types of mounts are indicated in the characteristics of the sight at once. Most often this means that this model is available in different configurations, but there are other, more specific options — the presence of several types of mounts in the kit at once, an adapter from one type to another, or even a universal retainer that is also compatible with Weaver / Picatinny rails, and with a dovetail. Such details in each case should be clarified separately.