USA
Catalog   /   Photo   /   Digital Cameras

Comparison Sony A7 II body vs Canon EOS 5D Mark III body

Add to comparison
Sony A7 II  body
Canon EOS 5D Mark III  body
Sony A7 II bodyCanon EOS 5D Mark III body
Compare prices 10Compare prices 2
TOP sellers
Camera type"mirrorless" (MILC)digital mirror
DxOMark rating9081
Sensor
Sensor
CMOS (CMOS) /bionz X processor/
CMOS (CMOS)
Sensor size
full frame /35.9х24 мм/
full frame /36 x 24 mm/
Total MP24.723.4
Effective MP number24.322.3
Maximum image size6000x4000 px5760x3840 px
Light sensitivity (ISO)100-25600
100-25600 /extended - 51200 and 102400/
Sensor cleaning
RAW format recording
Lens
Mount (bayonet)Sony ECanon EF
Manual focus
Image stabilization
with matrix shift /can work with optical stabilization of the lens (5 axes will be involved)/
is absent
Photo shooting
Number of scene programs147
Frames per series (RAW)18 шт
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/2 or 1/3 EV increments± 5 EV, in 1/2 or 1/3 EV increments
Auto bracketing
 /3 or 5 frames/
 /+/- 3.0 EV/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 60 fps
File recording formatsMPEG-4, AVCHD, XAVC SH.264
Manual video focus
Maximum video length
 
time limit /29 min. 59 sec./
Connection ports
micro HDMI v 1.4
headphone Jack
microphone Jack
mini HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
tracking
one shot
tracking
Focus points
117 шт /25 contrast sensors/
61 шт
Front / back adjustment
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicoptical (pentaprism)
Viewfinder crop0.71 x0.71 x
Frame coverage100 %100 %
Shutter speed30 -1/8000 sec
30 - 1/8000 sec /flash sync: 1/200 sec/
Continuous shooting5 fps6 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3.2 ''
Screen resolution1230 thousand pixels1040 thousand pixels
Rotary display
Additional screen
Memory and communications
2 card slots
Memory cards typesSD, SDHC, SDXC, MemoryStickSD, SDHC, SDXC, CompactFlash
Communications
Wi-Fi 4 (802.11n)
NFC
smartphone control
 
 
 
Flash
Built-in flash
External flash connect
flash X-sync1/250 sec
Power source
Power source
battery
battery
Battery modelNP-FW50, VG-C1EMLP-E6, BG-E11, MK-5D3
Battery capacity1080 mAh
Shots per charge350 шт950 шт
General
Charger modelBC-TRW, BC-QM1LC-E6
Underwater box modelWP-S10
Console/synchronizer modelRM-VPR1, RMT-DSLR2ST-E2
Materialmagnesium alloy
Protectiondustproof, waterproofdustproof, waterproof
Dimensions (WxHxD)127х96х60 mm152x116x76 mm
Weight599 g950 g
Color
Added to E-Catalognovember 2014march 2012

Camera type

— Digital compact. This term refers to the simplest variety of modern digital cameras — those that are often called "soap dishes" in everyday life. As the name implies, these models are small in size, so most of them can be carried even in your pocket. Other specific features include a small sensor (see "Sensor Size"), a fixed lens, and a high degree of automation — digital compacts with full manual shooting options are the exception rather than the rule. In general, this type of camera is designed mainly for amateur shooting — in most cases, the image quality is quite sufficient for domestic purposes, but such devices are usually unsuitable for professional photography.

— “Mirrorless” cameras MILC (Mirrorless Interchangeable Lens Camera — literally “mirrorless cameras with interchangeable lenses”) are compact cameras that are a kind of hybrid between compact digital cameras and “DSLRs”. They are not equipped with a system of mirrors, the viewfinder (if any) is made electronic or optical (see below), which allows you to minimize the weight and dimensions of the camera. On the other hand, such devices use matrices of the same class as in SLR cameras, which ensures high quality shooting with a minimum of noise. As the name suggests, MILC cameras also typically work with interchangeable lenses.

— Digital SLR cameras. The most technically advanced class of digital cameras. It got its name from the system of mirrors installed in the...camera body; thanks to these mirrors, light enters the viewfinder directly through the lens (and not through the auxiliary window, as on compact cameras). As a result, the photographer sees what will be shot in real time, with high-quality colour reproduction and high brightness. It is also important that the "SLR" matrix is closed from light most of the time — the light hits it only at the time of shooting, due to which it practically does not heat up and the noise in the resulting image is minimized. The lenses of such cameras are made interchangeable, and many settings, unlike conventional digital cameras, can be set manually.

— For a mobile phone. Cameras designed to be installed on a smartphone as an external accessory and not designed for stand-alone use. Outwardly, such a device resembles a lens with a mount on the phone case; however, inside this “lens” there is a full-fledged matrix, an image processor and a Wi-Fi or Bluetooth wireless module for connecting to a smartphone. The smartphone itself, when used, simultaneously plays the role of a screen and a control device, in addition, footage can be immediately transferred to it. Technically, a similar camera can be connected to another gadget — for example, a tablet: it's not a fact that it can be fixed on the case, but the connection itself is quite possible.

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Mount (bayonet)

The type of bayonet mount — mount for interchangeable lenses — provided in a SLR or MILC camera (see "Camera type"). Bayonets come in different sizes, and interchangeable lens specifications usually indicate which mount it is designed for. Most often, mounts of different types are not compatible with each other, but there are exceptions (sometimes directly, sometimes using adapters).

Also note that one brand can use different mounts for different classes of cameras — and vice versa, one mount can be used by several manufacturers. So, Canon releases cameras with mounts EF-M, EF-S, EF and Canon RF. Leica has Leica M, Leica SL, Leica TL. Nikon has in its arsenal Nikon 1, Nikon F, Nikon Z. Pentax — Pentax 645, Pentax K, Pentax Q. Samsung offers NX and NX-M mounts. Sony cameras have Sony A and Sony E, Fuji has Fujifilm G and Fujifilm X. And as an example of a mount used by different brands, one can cit...e Micro 4/3, which is widespread in Olympus and Panasonic cameras.

Image stabilization

An image stabilization method provided by the camera. Note that systems of the optical type and with a sensor shift are sometimes combined under the term "true" stabilization - due to their effectiveness. See below for more on this.

By itself, stabilization (regardless of the principle of operation) allows you to compensate for the effect of "shake" with an unstable camera position - especially when shooting handheld. This is especially true when shooting with a significant increase or at slow shutter speeds. However, in any case, this function reduces the risk of spoiling the frame, so cameras with stabilization are extremely common. The principles of work can be as follows:

— Electronic. Stabilization, carried out due to a kind of "reserve" - a section along the edges of the sensor, which initially does not participate in the formation of the final image. However, if the camera electronics detect fluctuations, it compensates for them by selecting the necessary image fragments from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their work it is necessary to allocate a fairly significant part of the sensor - and reducing the usable area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is turned on only at lower resolutions and is not available at ful...l frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable lenses.

- Optical. Stabilization, carried out when light passes through the lens, is due to a system of movable lenses and gyroscopes. As a result, the image hits the sensor already stabilized, and the entire sensor area can be used for it. Therefore, optical systems, despite the complexity and rather high cost, are considered more preferable for high-quality filming than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera Type") the availability of this function depends on the lens installed; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the complete lens is equipped with a stabilizer).

- With sensor shift. Stabilization, carried out by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, systems with a sensor shift have serious advantages - first of all, the fact that such stabilization will work regardless of the characteristics of the lens. For cameras with fixed lenses, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, the sensor shift makes it possible to use even “non-stabilized” lenses with convenience, and when installing “stabilized” optics, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the options described above: initially it operates according to the optical principle, and when the capabilities of the lens are not enough, an electronic system is connected. This improves the overall efficiency compared to purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are relatively complex and expensive, and not all of the sensor is involved. Therefore, such a combination is rare, mainly in separate advanced digital compacts.

- With sensor shift and electronic. Another type of combined stabilization systems. Like “optical + electronic”, it improves the overall stabilization efficiency, but at the same time it combines the disadvantages of the two methods (they are also similar: the complication and rise in price of the camera, plus a decrease in the useful area of \u200b\u200bthe sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

Number of scene programs

The number of scene programs provided in the camera design.

Scene programs are preset settings for some of the most common shooting scenes - for example, Portrait, Landscape, Sports, Sunset, etc. In addition to these presets, this list may include special effects and creative tools (such as color swap or fisheye), as well as exposure modes (see below). The presence of scene programs is especially useful for beginners and non-professional photographers, as it eliminates the need to tinker with each setting separately - just select the most suitable program, and all the necessary settings will be set automatically. The more scene programs the camera design provides, the wider its automatic adjustment capabilities.

Frames per series (RAW)

The highest number of shots the camera can capture “in one shot” when shooting in RAW format continuously (see “Recording in RAW Format”).

The technical features of modern digital cameras are such that during continuous shooting, photos have to be recorded in a special buffer, and only then, after the end of the series, they can be transferred to a memory card. This buffer has a limited size, so the number of frames in one series is also limited. At the same time, we note that this indicator is usually indicated for shooting at the highest possible resolution (see "Maximum image size"); at lower resolutions, the volume of each image is reduced, and the number of frames in the series may be more than stated in the specifications.

RAW images take up more space and require more processing power than "finished" JPEGs. Therefore, the number of frames in a series of this format is usually lower than that of JPEG. However, there are exceptions — usually these are cameras that have two separate buffers (for RAW and JPEG).
Sony A7 II often compared
Canon EOS 5D Mark III often compared