Memory size
The amount of own memory of the GPU; this parameter is sometimes called the amount of graphics card memory. The larger the amount of GPU memory, the more complex and detailed picture it is able to process in a period of time, and therefore, the higher its performance and speed (which is especially important for resource-intensive tasks like high-end games, video editing, 3D rendering, etc. ).
When choosing, it is worth considering that the performance of a graphics card is affected not only by the amount of memory, but also by its type, frequency of operation (see below) and other features. Therefore, situations are quite possible when a model with less memory will be more advanced and expensive than a more voluminous one. And you can unambiguously compare with each other only options that are similar in other memory characteristics.
On the modern market, there are mainly video cards with memory capacities of
2 GB,
4 GB,
6 GB,
8 GB,
10 GB,
11 GB,
12 GB, and
16 GB or even
more can be installed in the most advanced models.
Passmark G3D Mark
The result shown by the graphics card in the test (benchmark) Passmark G3D Mark.
Benchmarks allow you to evaluate the actual capabilities (primarily overall performance) of a graphics card. This is especially convenient in light of the fact that adapters with similar characteristics in fact can differ markedly in capabilities (for example, due to the difference in the quality of optimization of individual components for joint work). And Passmark G3D Mark is the most popular benchmark for graphics adapters nowadays. The results of such a test are indicated in points, with a higher number of points corresponding to better performance. As of mid-2020, the most advanced graphics cards can score over 17,000 points.
Note that Passmark G3D Mark is used not only for general performance evaluation, but also to determine the compatibility of a graphics card with a specific processor. The CPU and graphics adapter must be approximately equal in terms of the overall level of computing power, otherwise one component will “pull back” the other: for example, a weak processor will not allow a powerful gaming graphics card to unleash the full potential. To search for a video adapter for a specific CPU model, you can use the list "Optimal for AMD processors" or "Optimal for Intel processors" in the selection of our catalog.
DisplayPort version
The version of the DisplayPort and/or miniDisplayPort interface used by the graphics card. For the interfaces themselves, see the relevant help items; here we recall that they differ only in the type of plug. So the list of versions for both cases is the same, it looks like this:
— v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which was support for AMD FreeSync, a technology used in AMD video cards to synchronize the refresh rate of the monitor with the actual frame rate output by the video adapter.
— v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth me...ntioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
— v 1.4.Version introduced in March 2016. Formally, the bandwidth has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
—v 1.4a. An update released in 2018 "quietly" — without even an official press release. The main innovation was the update of Display Stream Compression technology from version 1.2 to version 1.2a.
Stream processors
The number of stream processors provided by the graphics card.
A stream processor is a separate part of the GPU, designed to execute one shader at a time. Shaders, in turn, are small programs responsible for creating individual graphic effects (for example, surface gloss, glare on the surface of water, motion blur, etc.). Accordingly, the more stream processors provided in the design, the more shaders the graphics card can simultaneously execute and the higher its computing power. However, in general, this is a rather specific parameter, relevant mainly for professional developers, modders and enthusiastic gamers.
Texture units
The number of texture units contained in the GPU.
As the name implies, such blocks are responsible for working with textures. Texture, in turn, is one of the main elements of 3D graphics: an image superimposed on the surface of a three-dimensional object (similar to, for example, wallpaper pasted on a wall or a label on a box). The specific purpose of texture blocks is to select textures and apply them to the surface of geometric objects. Other things being equal, more of these blocks means higher graphics performance; although in general this is a rather specific parameter, intended mainly for specialists and rarely needed by ordinary users.