Bluetooth
Bluetooth is a technology used to connect various devices wirelessly directly. In media centers and TV receivers, it can be used to broadcast sound to wireless headphones and acoustics, to work with wireless mice and keyboards, to use a smartphone / tablet as a remote control, etc.; specific functionality should be specified separately. Also note that the supported version of Bluetooth can be specified here. The newest and most advanced is
Bluetooth 5.0, but here is a more detailed description of the different versions:
- Bluetooth v4.0. The version in which the "Bluetooth Low Energy" (LE) format was first introduced — in addition to regular Bluetooth (version 2.1 functionality) and the high-speed HE standard for transferring large amounts of information (introduced in version 3.0). Bluetooth LE allows you to significantly reduce power consumption when transmitting small data packets, such as request-responses about connection activity in idle mode. For the media centers and TV receivers themselves, this is not particularly important, but for portable equipment (especially miniature ones, where battery capacity is very limited), such functionality will be useful.
- Bluetooth v 4.1. Development and improvement of Bluetooth 4.0. One of the key improvements was the optimization of collaboration with 4G LTE communication modules so that Bluetooth and LTE do not interfere with each other. In addition, this ve...rsion has the ability to simultaneously use a Bluetooth device in several roles — for example, to remotely control an external device while simultaneously streaming music to headphones.
- Bluetooth v4.2. Further, after 4.1, the development of the Bluetooth standard. It did not introduce fundamental updates, but received a number of improvements regarding reliability and noise immunity, as well as improved compatibility with the Internet of Things.
- Bluetooth v5.0. Version introduced in 2016. One of the most notable updates was the introduction of two new modes of operation for Bluetooth LE — with an increase in speed by reducing the range and with an increase in range by reducing the speed. In addition, a number of improvements have been introduced regarding simultaneous work with numerous connected devices, as well as work with the components of the Internet of Things.
HDMI
HDMI is the most common modern interface for working with HD content and multi-channel audio. Video and audio signals with this connection are transmitted over a single cable, and the bandwidth in the latest versions (
HDMI 2.0 and
HDMI 2.1) is enough to work with UltraHD resolution and even higher. Almost any modern screen (TV, monitor, etc.) with HD support has at least one HDMI input, which is why most media players and TV receivers have outputs of this type. However, there are also models without HDMI — these are mostly outdated or the most inexpensive solutions that use only analogue video interfaces. There are also models for several HDMI and in most cases one of these ports is for the incoming signal, while the HDMI ports differ in versions.
— v 1.4. The version presented back in 2009, however, does not lose popularity to this day. Supports 4K (4096x2160) video at 24 fps and Full HD at 120 fps; the latter, among other things, allows you to transfer 3D video over this interface. In addition to the original v 1.4, there are also improved versions v 1.4a and v 1.4b, where the possibilities for working with 3D have been further expanded.
-v 2.0. Version released in 2013. Among other things, it introduced the ability to work with 4K video at speeds up to 60 fps, compatibility with ultra-wide format 21: 9, as well as support for up to 32 channels and 4
...audio streams simultaneously. HDR support was not originally included in this release, but was introduced in v 2.0a and further enhanced in v 2.0b; media players from this category can support both the original version 2.0 and one of the improved ones.
— v 2.1. 2017 version, also known as HDMI Ultra High Speed. Indeed, it provides a very solid bandwidth, allowing you to work even with 10K video at a speed of 120 fps; in addition, a number of improvements have been made to HDR support. Note that the full use of HDMI v 2.1 is possible only with a special cable, but the functions of earlier versions remain available when using conventional wires. USB C
The number of USB-C connectors in the design of the device.
This interface differs from the full-sized USB host ports (see above) primarily in the design of the connector: it is much smaller and made double-sided (the plug can be inserted in either direction). There are also a number of notable differences regarding application specifics. The most common option is the same as for conventional USB — connecting external peripherals, primarily drives like flash drives and external HDDs. But for charging gadgets, such connectors are used extremely rarely. In some models, USB-C plays the role of a service input for managing settings from a computer (that is, it actually works in the USB slave format — see "Inputs"). Also, this connector may provide an Alternate Mode mode, when other interfaces are implemented through the USB-C hardware port — for example, DisplayPort or HDMI for video broadcasting, or Thunderbolt for connecting some accessories. In media players, this mode is practically not used yet, but in the future the situation may change.
Summing up, we can say that the features of using USB-C in each model should be clarified separately. As for the number, such connectors are rarely provided for more than one — this is quite enough in most cases.
LAN
LAN — connector for wired connection to the Internet and/or local area network using an Ethernet cable. A wired connection is not as convenient as Wi-Fi (see "Multimedia"), but it is considered more reliable and provides faster data transfer speeds. And the speed indicators depend on the device and can be 100 Mbps and 1 Gbps.
HDR support
HDR standard supported by the media player.
For more details about HDR in general, see above, while the standard defines some features of the implementation of this feature. Today, the following HDR formats are relevant:
— HDR10. Historically the first of the consumer HDR formats, less advanced than the options described below, but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content at all, and it is also common for Blu-ray discs. Allows to work with a colour depth of 10 bits (hence the name). At the same time, devices of this format are also compatible with content in HDR10 +, although its quality will be limited by the capabilities of the original HDR10.
— HDR10+. An improved version of HDR10. With the same colour depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the colour depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in colour reproduction.
—
Dolby Vision. An advanced standard used particularly in professional cinematography. Allows to achieve a colour depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream — HDR and standard (SDR). At the same time, Dolby Vision is based on the same tec
...hnology as HDR10, so in modern video technology this format is usually combined with HDR10 or HDR10 +. Video decoders
Codec — from the phrase "Encoder-DECoder" — in this case is the format used for encoding digital video during storage/transmission and decoding during playback (without encoding, video data would take up an unjustifiably large amount of space). Do not confuse this parameter with the format of video files: different files of the same format can be encoded with different codecs, and if the corresponding codec is not supported by the player, video playback will be impossible, even if the file format itself corresponds to the capabilities of the device. And in models with online TV support (see "Features") this nuance also determines compatibility with a specific broadcast: the general format of the broadcast is indicated by the codec used for this.
In general, modern devices usually have quite extensive sets of codecs (one of the most advanced is
H.265,
AV1 codecis also popular), and there are usually no problems with video playback; in extreme cases, you can use special programs for transcoding files. As for specific codecs, detailed data on them can be found in special sources, but with standard use of media players, such details are not needed.
Audio decoders
The set of audio codecs supported by the device
Codec — from the phrase "Encoder-DEcoder" — in this case, the format used for encoding and compressing sound in digital form during storage/transmission and decoding — during playback (digital sound is basically impossible without encoding, and compression allows to reduce the amount of data). Information about supported codecs is relevant primarily for assessing whether the player will be able to work with sound in a particular video file. The fact is that even in video files of the same format (see below), sound can be compressed by different codecs; and if the player supports the file format, but does not support the codec, sound playback will become impossible.
Theoretically, these rules are also relevant for audio files and online broadcasts (all formats — TV, video, audio). However, in fact, when working with such content, you can ignore codec data. So, for each audio file format, usually, its own standard codec is used, and file type support automatically means codec support. Broadcasts usually use generally accepted audio decoders like MPEG-1 or MPEG-2, which are practically guaranteed to be supported by any modern player designed for such broadcasts.
As for specific codecs, detailed information on them can be found in special sources, however, with the standard use of devices, such details are usually not needed.
Screen
The device has its own external screen. Such
a screen has a small size and performs an auxiliary role; various additional information can be displayed on it: operating mode, selected media, file name and location, playback time, etc.
Remote control
Remote control included with media center or TV tuner. In addition to the classic remote control with basic controls, there are manipulators with additional features.
— QWERTY keyboard. Such remotes, in addition to the standard set of keys for controlling the player (see above), have an alphabetic keyboard similar to a computer one. This is relevant primarily for media centers with support for social media and photo services — a keyboard with letters is needed at least to enter a login/password.
— With sensors. A kind of remote control that uses sensors instead of classic buttons. Such equipment is somewhat more expensive, on the other hand, the sensors give the remote control a stylish appearance, and in some cases they are more convenient than buttons.
—
With voice control. A remote control equipped with a built-in microphone and capable of recognizing a specific set of voice commands. This control format is often more convenient than using buttons/sensors. At the same time, the set of supported commands can be different — sometimes it is quite limited compared to traditional remotes, sometimes vice versa (for example, it may be possible to type text using voice input); these nuances should be clarified separately. It also will be useful to find out the list of supported languages; note that English is almost guaranteed to be on this list, but Russian not always.
- Programmable. A universal rem
...ote control that can be configured to work in conjunction with media players, TV tuners and other home electronics. By default, such remote controls are loaded with a database of signal codes for various types of equipment. To activate a specific device, they usually use a certain combination of button presses. Often programmable remote controls have teachable keys, a built-in gyroscope, an air mouse function and other similar options. The programmable buttons on these models are often dedicated to controlling the TV, eliminating the need for multiple remote controls. The service manual for them contains detailed programming instructions from the manufacturer.
— Programmable with voice control. An advanced type of programmable remote controls (see the corresponding paragraph) with a built-in microphone for issuing voice commands. Voice control is fully supported on set-top boxes running Android; together with conventional media players and TV tuners, you can make voice requests by speaking a phrase into the remote control. The exact implementation of voice control varies depending on the remote control model and the receiving device.
— Absent. The absence of a remote control is typical for network media players controlled from other devices — usually from a computer or from a mobile gadget through a special application.