DxOMark rating
The result shown by the camera in the DxOMark ranking.
DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.
Sensor
— CCD (CCD). Abbreviation for Charge-Coupled Device. In such sensors, information is read from the photosensitive element according to the “line at a time” principle — an electronic signal is output to the image processor in the form of separate lines (there is also a “frame at a time” variant). In general, such matrices have good characteristics, but they are more expensive than CMOS. In addition, they are poorly suited for some specific conditions — for example, shooting with point light sources in the frame — which is why you have to use various additional technologies in the camera, which also affect the cost.
— CMOS (CMOS). The main advantages of CMOS matrices are ease of manufacture, low cost and power consumption, more compact dimensions than those of CCDs, and the ability to transfer a number of functions (focus, exposure metering, etc.) directly to the sensor, thus reducing the dimensions of the camera. In addition, the camera processor can read the entire image from such a matrix at once (rather than line by line, as in CCD); this avoids distortion when shooting fast-moving objects. The main disadvantage of CMOS is the increased possibility of noise, especially at high ISO values.
— CMOS (CMOS) BSI. BSI is an abbreviation for the English phrase "Backside Illumination". This is the name of "inverted" CMOS sensors, the light on which does not penetrate from the side of the photodiodes, but from the back of the matrix (from the side of the subst
...rate). With this implementation, the photodiodes receive more light, since it is not blocked by other elements of the image sensor. As a result, back-illuminated sensors boast high light sensitivity, which allows you to create images of better quality with less noise when shooting in low light conditions. BSI CMOS sensors require less light to properly expose a photo. In production, back-illuminated sensors are more expensive than traditional CMOS sensors.
— LiveMOS. A variety of matrices made using the technology of metal oxide semiconductors (MOS, MOS — Metal-Oxide Semiconductor). Compared to CMOS sensors, it has a simplified design, which provides less tendency to overheat and, as a result, a lower noise level. It is well suited for the "live" viewing mode (viewing in real time) of the image from the matrix on the screen or in the camera's viewfinder, which is why it received the word "Live" in the title. They also feature high data transfer rates.Connection ports
— USB C. A universal USB interface that uses a Type C connector. USB ports themselves (all types) are used mainly for connecting the camera to a computer for copying footage, managing settings, updating firmware, etc. Specifically The Type C connector is comparable in size to earlier miniUSB and microUSB, but has a reversible design that allows the plug to be inserted in either direction. In addition, USB C often operates according to the USB 3.1 standard, which allows for connection speeds of up to 10 Gbps - a useful feature when copying large amounts of content.
-
HDMI. A comprehensive digital interface that allows you to transmit video (including high resolution) and audio (up to multi-channel) over a single cable. The presence of such a port makes it possible to use the camera as a player: it can be directly connected to a TV, monitor, projector, etc. and view your footage on the big screen. In this case, broadcast capabilities can include not only video playback, but also demonstration of captured photos in slide show mode. HDMI inputs are present in most modern video equipment, and connection is usually not a problem.
Nowadays, there are several versions of the HDMI interface on the market:
- v 1.4. The oldest version currently relevant, released in 2009. However, it supports 3D video, is capable of working with resolutions up to 4096x2160 at a speed of 24 fps, and in Full HD resolution the frame rate can reach 120...fps. In addition to the original v.1.4, there are also improved modifications - v.1.4a and v.1.4b; they are similar in basic capabilities, in both cases the improvements affected mainly work with 3D content.
- v2.0. Significant HDMI update introduced in 2013. In this version, the maximum frame rate in 4K has increased to 60 fps, and support for ultra-wide 21:9 format can also be mentioned. In update v.2.0a, HDR support was added to the interface capabilities; in v.2.0b this function was improved and expanded.
- v 2.1. Despite the similarity in name to v.2.0, this version, released in 2017, was a very large-scale update. In particular, it added support for 8K and even 10 K at speeds up to 120 fps, and also further expanded the capabilities for working with HDR. This version was released with its own cable - HDMI Ultra High Speed; all features of v.2.1 are available only when using cables of this standard, although basic functions can be used with simpler cords.
— Headphone output. Audio output allows you to connect headphones to the camera. As a rule, it is represented by a classic 3.5 mm mini-jack. The presence of such a connector provides the ability to monitor sound during video recording in real time. This is especially important when filming interviews, vlogs and other similar projects.
— Microphone input. Specialized input for connecting an external microphone to the camera. External microphones are significantly superior to built-in microphones in sound quality. Firstly, they are not so sensitive to the camera’s “own” sounds - from buttons, control wheels, focus motors, etc. (and if the microphone uses a long wire and is not attached to the body, these sounds will not be heard at all). Secondly, external microphones themselves have more advanced characteristics. On the other hand, their use is justified mainly for professional video recording; therefore, the presence of a microphone input, as a rule, corresponds to advanced video recording capabilities
Shutter speed
The range of shutter speeds that the camera is capable of shooting.
Exposure is the time between opening and closing the shutter (see below), in other words, the period of time captured in the photo. For different purposes, methods and conditions of shooting, different shutter speeds will be optimal. Small values (in modern cameras they can reach thousandths of a second) are important when shooting fast-moving objects and for shooting at long distances — in the first case, they minimize the effect of image blur from the movement of the object, in the second — the effect of camera shake in hands. However, for shooting at low shutter speeds, a good matrix light sensitivity or high-aperture optics are required (see above). Long shutter speeds (measured in seconds) are used for shooting in low light conditions — such as city streets at night or the starry sky — and also allow you to create the effect of movement in the frame. Accordingly, the greater the shutter speed range, the wider the camera's ability to choose the option that is optimal for certain conditions.
Continuous shooting
Continuous shooting speed provided by the camera at the maximum frame resolution. At lower resolutions, the speed may be higher, but this value is considered the key characteristic.
In continuous shooting, the photographer presses the button, and the camera takes several shots in a row, usually at intervals of a fraction of a second. Such shooting is convenient, for example, for capturing fast-moving objects: it allows you to choose the most successful from a series of frames, or to show the dynamics of movement using the entire series. And the higher the speed, the more effective the shooting, the more frames the camera can capture in a period of time. On the other hand, speed requires appropriate hardware and can significantly affect the cost.
Memory cards types
The type of memory cards supported by the camera. To date, there are many types of memory cards, differing both in size and in the technology used; not all of them are mutually compatible. Many formats are a common standard and are used by many manufacturers, but there are also proprietary developments of individual manufacturers that are used only in their cameras.
Here are some of the most popular memory card formats found in digital cameras:
— SD and further modifications — SDHC, SDXC. An extremely popular format, used not only in most cameras, but also in various other types of equipment — laptops, media centers, etc. Earlier versions of SD cards are compatible with later card readers, but not vice versa.
— microSD (microSDHC microSDXC). A smaller version of the SD cards described above, used mainly in the smallest cameras.
— Memory Stick Pro (and its various modifications). The Sony proprietary standard is found mainly in the cameras of this company. Such cards are quite fast and roomy, but expensive.
— CompactFlash. Quite old, but still used in photographic technology, the standard of memory cards. These cards are quite large, but provide high speed and have a capacity of up to 128 GB. They are found mainly in "reflex cameras" (see "Type of camera").
— XQD. The standard, which is a kind of ideological successor to CompactFlash: it provides a large size of cards, which, however, is compensated by hig...h capacity and speed. It is found mainly in SLR cameras of the highest price category.
Communications
-
GPS module. The camera has a built-in GPS satellite navigation module. In digital cameras, the GPS module is used primarily for setting the so-called. geo-tagging to photos: information about specific geographical coordinates of the shooting location is recorded in the service information about each image. However, the matter is not limited to this, and models with this function can have many additional features - from classic navigation to special programs like a database of points of interest with hints based on the current location.
-
WiFi. A wireless standard originally developed for computer networking, but more recently allowing for direct connection between devices. The ways in which Wi-Fi is used in cameras can vary. Thus, the most popular option is to connect to a smartphone, tablet or other similar device for remote control (see below) and / or transfer footage to an external device. Some cameras have built-in software that allows you to directly connect to the Internet through wireless access points and upload photos and videos to popular network services. And in models running Android (see above), specific features depend only on the installed software and may include full access to social networks through client programs (see below) and even web surfing through a browser.
— Bluetooth. A wireless interface used to communicate with various electronic devices. In cameras, Blu
...etooth is most often used to connect to a computer or laptop and transfer footage; In addition, it allows you to use the direct printing function on printers equipped with Bluetooth. The range of Bluetooth communication is up to 10 m, and the devices do not necessarily have to be in direct line of sight to each other.
- NFC chip. NFC (Near-Field Communication) is a wireless communication technology designed to connect various portable devices with each other at a distance of up to several centimeters. In cameras it plays an auxiliary role, designed to facilitate connection with other devices (smartphones, tablets, etc.) using a longer-range standard (Wi-Fi or Bluetooth). Instead of delving into the settings - looking for devices, connecting them manually - just bring the NFC camera to a gadget equipped with the same chip and confirm the connection request.
— Control from a smartphone. The ability to remotely control the camera using a smartphone, tablet or other similar gadget. The connection between the camera and the control device is usually carried out via Wi-Fi (see above), while a special application is used for control, and the gadget’s screen plays the role of a viewfinder. The specific capabilities of such control can be different - releasing the shutter on command, selecting exposure parameters and other shooting settings, focusing by touch, etc. Often, it is also possible to “drain” the footage onto the control device and, through it, to the Internet. Note that for cameras used with mobile phones (see “Camera Type”), this function is not indicated: such a camera is usually mounted directly on the device, and there is no talk of remote control.Battery model
The model name of the original battery (see "Power Type") used in the camera. Knowing this name, you can easily find a spare or replacement battery for the device.
Shots per charge
The maximum number of photos that the camera can take on a single battery without recharging/replacing it. In fact, this number usually turns out to be less (sometimes quite noticeable) due to the fact that part of the charge is “eaten up” by the lens mechanics, using the display, changing settings through the menu, etc. Nevertheless, this parameter is a good indicator of the battery life of the device, and different models can be compared with each other.