Dark mode
USA
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison HTC Vive Cosmos Elite vs HTC Vive Pro

Add to comparison
HTC Vive Cosmos Elite
HTC Vive Pro
HTC Vive Cosmos EliteHTC Vive Pro
from $1,099.00 
Outdated Product
Compare prices 6
User reviews
0
1
0
3
TOP sellers
Main
To work, you need to connect to a computer or smartphone. The design of the device has 4 cameras (2 front, 2 side). Thanks to the presence of cameras and controllers, there is no need for external motion tracking devices.
Requires the use of two controllers to track the movements of the user.
Headphones have a built-in amplifier. Dual front camera. Increased resolution of AMOLED matrices. Comfortable fit. Huge library of PC games.
Requires a relatively powerful PC and a lot of free space in the room.
CompatibilityPC / game consolePC / game console
Specs
Screen resolution2880x1700 px2880x1600 px
Field of view110 °110 °
Refresh rate90 fps90 fps
Accelerometer
Gyroscope
Proximity sensor
Lens distance adjusting
Pupillary distance adjustment
Multimedia
USB A
USB C+
DisplayPortv1.2v1.2
Bluetooth+
Microphone
Headphones
General
Controller
External sensors
Track camera
Materialplasticplastic
Added to E-Catalognovember 2020january 2018

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Proximity sensor

The presence of a sensor in the glasses that reacts to approaching the user's face.

A similar sensor is used to automatically switch between operating and standby modes: for example, when the user takes off the glasses, the sensor turns off the built-in screens (or the phone, if it is connected to the glasses via a connector), saving battery power and equipment life, and when put on, it turns on points for full functionality.

USB A

The glasses must have at least one USB A connector. This is a full-sized USB connector, the same type as standard USB ports on computers and laptops. But its functions may be different, depending on the functionality of the glasses (see "Purpose"). So, in models for PCs and consoles, USB is one of the connection connectors used in conjunction with a video interface such as HDMI or DisplayPort: an image is transmitted via a video connector, and data from sensors on glasses is transmitted via a USB connection, which is necessary to change the picture and create " immersion effect. And in independent devices, USB A is used to connect various additional accessories — for example, flash drives with applications or other content. It is also possible to use this connector to charge the battery, although this method of use in general is not typical for it.

USB C

The presence in the glasses of the connector type USB-C. This is a relatively new type of USB port, which has a miniature size (slightly larger than microUSB) and a convenient double-sided design that allows you to connect the plug in either direction. It can be found in glasses for various purposes and, accordingly, provide different ways of application. So, in models for PC / consoles, this connector is used similarly to traditional USB — with the main connection, in parallel with the HDMI or DisplayPort video interface. In standalone devices, on the other hand, USB-C is mainly used to charge the battery and connect to a computer for direct file exchange, settings management, firmware updates, etc.

Also note that this paragraph may specify the USB version, which corresponds to the USB-C connector. Nowadays, two versions are relevant — 3.2 gen 1 and 3.2 gen 2; for VR glasses, the difference between them is generally not fundamental.

Bluetooth

The presence of a Bluetooth module in the glasses; The Bluetooth version to which this module corresponds can also be specified here.

Bluetooth is a technology created for direct wireless connection between various devices. This technology is found in all types of VR glasses (see “Purpose”), although most models with its support are independent devices. In any case, the most popular way to use Bluetooth in virtual reality glasses is to broadcast sound wirelessly. Moreover, the format of such a broadcast may be different, depending on the specifics of the glasses themselves. Thus, standalone devices broadcast the reproduced sound to external headphones. Models for PCs and smartphones may have built-in headphones, and here the sound is transmitted via Bluetooth to the glasses from an external device; Audio from the built-in microphone can be transmitted in the opposite direction.

In addition, there are other possible ways to use Bluetooth, such as directly exchanging files with another device or connecting game controllers. Such capabilities are found exclusively in stand-alone glasses; the specific functionality for each model should be clarified separately.

As for the versions, the oldest one used in VR glasses today is Bluetooth 3.0, the newest is Bluetooth 5.0. However, the differences between different versions for such devices are not fundamental; this information is provided mainly for reference purposes.

Microphone

The presence of a microphone in the design of VR glasses.

This function is mainly equipped with models for PC / consoles (see "Intended use"). The built-in microphone is mainly used for voice communication in online games. At the same time, it often turns out to be more convenient than a desktop microphone or a microphone built into a headset: glasses can interfere with the comfortable wearing of a headset, and a desktop device is not applicable because at least the user’s head (or even the whole body) is constantly moving in VR games, and constantly it is impossible to be at the optimal distance from the microphone.

For added convenience, your own microphone can be made retractable or removable.

Controller

The presence of a controller — an additional control device — is included in the delivery of glasses.

The design and functionality of such an accessory may be different. So, the most popular option is specialized game controllers with a characteristic look — a handle with an analogue lever and buttons. There can be two such handles at once, under both hands; and in some models they are also used to control gestures. The movement of the hands can be tracked both by sensors in the controllers themselves and by cameras on the glasses. There are also simpler solutions — for example, portable gamepads or remote controls for controlling video playback.

External sensors

The presence of external sensors in the delivery set of glasses.

Such sensors are placed in a special way (usually in the corners) in the room where glasses are supposed to be used. They allow you to turn this room (all or part of it) into a playing zone — a space in which the player can physically move during the game. This provides additional features and at the same time ensures safety: the device warns the player when approaching the boundaries of a safe play area (in the real world), preventing collisions and other similar troubles.
HTC Vive Cosmos Elite often compared
HTC Vive Pro often compared