USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison IMILAB iMiki SF1E vs IMILAB iMiki SF1

Add to comparison
IMILAB iMiki SF1E
IMILAB iMiki SF1
IMILAB iMiki SF1EIMILAB iMiki SF1
Outdated ProductOutdated Product
TOP sellers
Main
Ability to make Bluetooth calls.
Ability to make Bluetooth calls.
Typesmartwatchsmartwatch
Interface
Bluetooth v 5.2 /+ 3.0/
Bluetooth v 5.0 /+ 3.0/
Telephony
Calls and alerts
notifications
voice control
vibration
built-in microphone
built-in speaker
notifications
voice control
vibration
built-in microphone
built-in speaker
Sports and tourism
Possible measurements
heart rate monitor
pressure (tonometer)
blood oxygen level
number of steps
distance traveled
calories burned
activity time
sleep tracking
stress level
heart rate monitor
pressure (tonometer)
blood oxygen level
number of steps
distance traveled
calories burned
activity time
sleep tracking
stress level
Sports modes100100
Display
Touch screen
Typecolourcolour
Display type
AMOLED /up to 1000 nits/
AMOLED /up to 1000 nits/
Size2.01 "2.01 "
Screen resolution502x410 px502x410 px
PPI322 ppi322 ppi
Watch face protectionglassglass
Bezel-less
Hardware
Extra features
accelerometer
accelerometer
Power source
Device chargingmagneticmagnetic
Source of powerLi-IonLi-Ion
Battery capacity280 mAh280 mAh
Operating time (normal mode)7 h7 h
Operating time (normal mode)7 days7 days
Case and strap
Materialplasticmetal
Strap Options
rubber/silicone
rubber/silicone
Clasp optionsclassic buckleclassic buckle
Quick release strap
Band Width22 mm22 mm
General
Dustproof & waterproofIP68IP68
Dimensions (without strap)45.8x37x10.2 mm45.8x37x10.2 mm
Weight40 g40 g
Added to E-Catalogaugust 2023august 2023

Interface

The main way to connect a wearable gadget with external devices. For smartwatches and fitness bands (see "Type"), this refers to a connection to a smartphone or tablet, while in the case of watch-phones, it usually refers to headsets.

— Bluetooth. Wireless technology for direct communication of various devices with each other. This is the most popular interface in smartwatches and bracelets: Bluetooth modules can be made very tiny, the communication range even in the earliest versions reaches 10 m, and different generations of Bluetooth are mutually compatible in terms of basic functionality. Specifically, the versions nowadays are as follows:
  • v2.0. The earliest standard used in modern wearable gadgets. The possibilities of such a connection are more modest than those of more advanced versions, but they are often quite enough.
  • v3.0. A standard that combines classic Bluetooth v 2.0 and a high-speed “add-on” for transferring large amounts of data.
  • v4.0. Further, after 3.0, improvement of Bluetooth: in addition to the classic and high-speed format, this version added Bluetooth Low Energy technology. Support of this technology is especially useful in fitness trackers, which usually transmit small amounts of data, but constantly.
  • v4.1. Modification of the 4.0 standard described above with improved protection against interference while working with LTE mobile communications. ...i> v4.2. Another improvement of the 4.0 standard, which introduced, in particular, improved data protection and increased connection speed.
  • v5.0. The fifth generation of Bluetooth, released in 2016. One of the most interesting improvements is the introduction of two special modes of operation for Bluetooth Low Energy: extended range (by reducing speed) and increased speed (by reducing range).
— USB. Wired connection to a computer/laptop using a USB cable. A rather specific option, found in some fitness trackers and children's beacons. During working hours, such a gadget functions completely independently, and the USB connection is used only occasionally, for some special tasks: transferring collected data to a computer, charging the battery, changing some settings, etc. This is not as convenient as a permanent connection via Bluetooth, therefore, in wearable gadgets, USB is rarely used as the main connection method.

— 3.5 mm (mini-Jack). Another wired connection method, almost completely similar to the USB described above and differing only in the type of connector. Also, the 3.5 mm plug is designed mainly to work with smartphones and tablets, and not with computers. However, it is also extremely rare.

Material

The material from which the body of the gadget is made. Some models are available in several versions, made of different materials — for example, aluminium or steel; for such cases, all available options are indicated in the specs at once.

Plastic. Plastic is often considered a low-cost option, but this is not true in the case of wearable gadgets: such devices can use different types of plastic, including very advanced, durable and reliable ones. So the overall quality of such a case, usually, directly depends on the price category of the device. The common advantages of all types of plastic are relatively low weight, resistance to moisture, the ability to give the body any colour and shape, as well as low thermal conductivity.

Metal. Cases made of metal, for which the manufacturer, for some reason, did not specify the specific composition. However, most often in such cases we are talking about aluminium or steel, see below for more details on both. But high-end materials such as gold or titanium are rarely hidden under the modest term "metal" — they are usually indicated directly in the specifications. Anyway, in general, metal cases are somewhat stronger and more reliable than plastic ones, they also look more solid, but they are also more expens...ive.

— Steel. Usually, stainless steel is used for wearable gadgets. It is highly durable and reliable, does not corrode, looks stylish and neat, and is relatively inexpensive — cheaper than many aluminium alloys, not to mention titanium. One of the peculiarities of steel cases is rather heavy weight, but it can be both a disadvantage and an advantage: a massive case creates an additional feeling of reliability and solidity. It should be noted that most gadgets with steel cases have round dials and a traditional design, which is well suited even to a business style, but occasionally there are exceptions.

— Aluminium. Aluminium alloys combine high strength and low weight — much less than steel. But this material is somewhat more expensive. It is also considered well suited for bright youth gadgets, although it is occasionally used in more traditional devices.

— Rubber. A material found in some models of children's beacons and fitness trackers (see "Type"), but almost never used in other types of wearable gadgets. One of the key advantages of rubber is softness, which gives a certain degree of impact protection and makes the case as safe as possible; both are especially important for children's devices. In addition, such a case can be easily made waterproof and even completely sealed, as well as made in any colour. On the other hand, plastic has practically the same advantages (except for softness), and rubber costs a little more (although it is noticeably cheaper than metals).

— Titanium. Titanium alloys are premium materials and are rarely used, mainly in top-tier models of “extreme” gadgets. This material is light and at the same time extremely durable, besides it perfectly holds its shape when struck; however, titanium costs much more than the same aluminium, despite the fact that high reliability is not so often decisive.

— Gold. Gold or gold-plated case turns the gadget into a stylish fashion accessory. Such a case is very expensive, but this cannot be called a disadvantage: the price of the device emphasizes the status of the owner.

— Ceramics. Special high-strength ceramics is another premium material that not only performs a practical function, but also demonstrates the high level of the gadget and the solidity of its owner. On the practical side, in addition to strength and reliability, this material has extremely high scratch resistance, which allows it to retain its looks for a very long time even in not very favorable conditions. At the same time, ceramics do not tolerate strong point impacts.