Features
-
Music Center. Music centers are stationary audio systems, including a player, amplifier and acoustics; Their distinctive feature is the speakers, made separately from the main unit. Some models may provide mounts for installing speakers on the main unit, but these mounts are quick-release, and the length of the wires allows you to place the speakers separately.
-
Minisystem. Minisystems are relatively small devices made in one-piece housings; Despite their small size, they are usually designed for stationary use, although they may have independent power supplies (see below). The functionality of mini-systems can be different: some models, in fact, are speakers with slightly expanded capabilities, in others these capabilities can be comparable to full-fledged music centers and even have
wireless charging.
—
Radio tape recorder. The radios have a distinctive design reminiscent of cassette recorders; and some of them are even capable of working with cassettes, see "Media". Like the music centers described above, such devices have everything you need for listening - a player, an amplifier and acoustics; however, the speakers are made non-removable, and the functionality of radio tape recorders is usually more modest. On the other hand, such models are portable and can even be used to play music on the go - almost mandatory f
...eatures of radio tape recorders are the presence of a handle for transportation and the ability to be autonomously powered (see below) from replaceable batteries.
— Floor system. The purpose of audio systems of this type is already clear from the name: they are initially designed for installation on the floor. This installation allows you to create fairly large devices with powerful acoustics; in fact, most floor-standing audio systems are actually a set of speakers with a built-in player. However, there are also quite compact models of this type that allow desktop or wall installation with the stand disconnected.
- For parties. Audio systems for organizing incendiary musical parties with friends and family. Such models are capable of sounding a vast space both indoors and on the street dance floor. Often, audio systems for parties are complemented by built-in lighting effects to create a disco atmosphere; microphones can also be connected to them, which karaoke lovers will appreciate. Alternative names for such audio systems are Party speaker or PartyBox.
— For musicians. Advanced speakers without light and music with good sound quality, especially for musicians who give performances on the street or participate in outdoor events. Such models are not intended for full-fledged concerts, but rather for “live” performances in public places. Audio systems often include the ability to connect musical instruments, and they are often equipped with a suitcase-type handle for ease of carrying the equipment. If it falls under the above, but there are lighting effects - For parties.
— Smart speaker. Audio systems in the form of relatively small single speakers with “smart” control electronics. For such devices, four key features can be distinguished: Internet connection (usually via Wi-Fi), synchronization with a smartphone or tablet (usually the same), support for voice commands and advanced functionality. In fact, smart speakers are not classic audio systems, but universal “assistants” with speakers for playing music; and the voice control capabilities in them go far beyond the “musical” functions. Thus, many models allow you to set a timer or alarm on a smartphone, control smart home components, receive help on a variety of requests, etc. At the same time, contextual recognition of commands is often supported, with the ability to process complex requests like “put on the band I listened to yesterday In the evening".Radio Data System (RDS)
Tuner support for Radio Data System technology. This technology is used mainly in the FM band; it allows, in addition to the sound signal, to transmit additional textual information by radio — for example, the names of broadcast compositions, announcements, advertising messages, etc. For RDS-enabled audio systems, this information is shown on the display.
System power
The total sound power provided by the audio system at maximum volume, in other words, the total power of all the speakers provided by the device (including the subwoofer).
The higher the power, the louder the system will sound and the larger the area it can cover. On the other hand,
high power significantly affects the price, dimensions, weight and power consumption of the device. In addition, when evaluating and comparing according to this indicator, it is worth considering some nuances. Firstly, some manufacturers go to the trick and give in the characteristics not the average, but the peak sound power; such numbers can be quite impressive, but they have very little to do with real loudness. So if it seems to you that the claimed power is too high, it's ok to clarify what exactly is meant in this case. Secondly, when comparing, it is worth considering the presence of a subwoofer — it plays an auxiliary role, but it can account for more than half of the total system power. Because of this, for equal total power, a device with a subwoofer may be quieter than a model without a subwoofer: for example, a 2.0 40W system will have 20W per main channel, while a 2.1 40W model may have 20W per subwoofer, and only 10 watts for the main speakers.
Power per channel
Nominal sound power (see "System power") on each of the main channels of the audio system. This indicator is most often indicated in models with a subwoofer (see "Number of channels"); knowing it, you can estimate the power distribution between the main speakers and the subwoofer.
Number of bands
The number of distinct frequency ranges (bands) into which sound is divided when played through the acoustics of an audio system. For each such band, a separate speaker is provided, and sometimes several.
The simplest option provides 1 lane; it is very popular in modern audio systems, because. requires a minimum number of speakers, and the sound quality can be quite good. More advanced options provide 2-3 bands (low and high frequencies, or bass, treble and medium), and in high-end models, the number of bands can be up to five. Note that, in addition to integers, models are also produced with a fractional number of stripes — for example, 2.5 or 3.5. This marking indicates the presence in the design of a speaker responsible for two bands at once: for example, model 2.5 has separate speakers for bass and treble plus a combined bass + midrange (similar in design to bass, but also loaded with mid frequencies).
Anyway, the abundance of bands, usually, indicates a high class of acoustics: the more separate frequency ranges, the narrower the specialization of each speaker, the more accurately it is able to reproduce its part of the signal, and the more complex the system is.
Phase inverter
The phase inverter is a tube installed in the column housing and having an outlet to the surrounding space. The length of the tube is chosen so that a signal comes out of the outlet, inverted in phase relative to the signal from the front of the diffuser. This enhances the sound pressure and improves the sound of the speakers, including at low frequencies. Note that such audio systems should be placed at a certain distance from walls, furniture, etc. — otherwise, a hum may occur due to the movement of air through the phase inverter tube.
A similar function in some models is performed by a passive radiator (see below).
Bass Boost
Bass boost function for powerful and rich bass. Often implemented as a single button, with which you can actually "turn the bass on and off." This is more convenient than adjusting the low frequencies using the equalizer; in addition, various special technologies can be used to enhance the bass.
Outputs
—
RCA. The RCA interface uses coaxial cables, with characteristic "tulip" plugs, and the corresponding connectors. It can be used to transfer different types of data, however, in this case, it means outputting an audio signal in analogue format, one channel of audio per connector. RCA is widely used in modern audio technology, but its resistance to interference is very limited.
— Mini-Jack (3.5 mm). One of the standard connectors in modern audio equipment, it is widely used in portable devices, as well as for connecting headphones. However, we note that in this case we mean the jack responsible for the line output — an interface for transmitting an audio signal in analogue format to an external device, such as an amplifier. The headphone jack is listed separately in our catalog, even if it belongs to the 3.5 mm mini-Jack standard; See below for details on headphone output.
—
Coaxial S / P-DIF. An electrical version of the S / P-DIF standard, using a coaxial cable with a “tulip” connector for signal transmission. Do not confuse this interface with the analogue RCA described above — despite the identity of the connectors, these standards are fundamentally different: "coaxial" works in digital format and even multi-channel audio can be transmitted over a single cable. Compared to
optical S/P-DIF, this interface is less resistant to interference, but more rel
...iable because electrical cables are not as delicate.
— Optical. One of the varieties of the S / P-DIF standard is, along with the coaxial one described above. In this case, the signal is transmitted via a TOSLINK fiber optic cable. The main advantage of this interface is its complete insensitivity to electrical interference, while its capabilities are sufficient even to work with multi-channel audio. Among the shortcomings, it is worth noting the high price of connecting cables, as well as the need for careful handling of them.
— Subwoofer. A separate output for connecting an external subwoofer — a specialized low-frequency speaker. The use of such a speaker allows you to significantly improve the sound of low frequencies, make the bass powerful and rich, which general-purpose speakers are not capable of. Note that such an output can also be useful in systems with a built-in subwoofer — external "subwoofers" are in most cases more powerful and provide more options for adjusting the sound.
— Headphones. Separate headphone output. Most often, a standard 3.5 mm mini-Jack or 6.35 Jack is used for this purpose, but there may be other options — for example, a manufacturer's proprietary connector. Anyway, headphones can come in handy in situations where you need to keep quiet — for example, if you want to listen to music at a late time when others are already sleeping — or vice versa, in noisy environments when ambient sounds drown out the speakers of the audio system.
— Composite. The full-size composite interface includes three connectors — one for video transmission and two for left and right stereo channels. However, in this case, a composite output usually means only a video connector (the standard acoustics of the audio system are responsible for the sound, it usually makes no sense to broadcast it to a TV). Anyway, this output allows you to connect the audio system not only to the latest, but also to frankly outdated TVs. Its disadvantages are poor image quality and incompatibility with HD.
— Component. Output for transmitting video signal in analogue format. Outwardly similar to the composite interface described above, because also uses three RCA cables; however, in this case, these cables carry three components of the video signal (hence the name). The component interface is considered the most advanced among the popular analogue video standards, it provides the highest image quality among them and is even capable of working with HD resolutions. Among the shortcomings, it is worth noting the impossibility of transmitting sound — this will require a separate connection.
— S video. Analogue interface for video transmission. In some way similar to the component described above, since it also provides separate wires for transmitting video signal components; however, in this case there are only two of these wires. This, on the one hand, allowed us to limit ourselves to one connector instead of several, on the other hand, it slightly reduced the quality of the “picture” and limited the bandwidth, so HD is out of the question with such a connection.
— SCART. Universal audio/video interface using a characteristic large 21-pin connector (20 pins plus a rim around the connector). For a long time it was the standard for European video equipment, but today it is considered obsolete due to its low bandwidth and significant dimensions. Note that SCART can work with signals of different formats, which allows the use of adapters — in particular, for connecting external devices via composite and component interfaces.
— HDMI. Universal digital interface that allows you to transfer HD-video and multi-channel audio over a single cable. It is practically a standard for modern video equipment, in particular, it is present in most TVs. In audio systems, this type of output is used in the same way as the coaxial S / P-DIF described above — that is, to output the audio signal in digital form.Autonomous power supply
Type of
independent power sourceused in the audio system. Such power is usually not the only option — it only complements the ability to work from the network.
— AA batteries. Replaceable elements of a standard size, colloquially known as "finger". Available in a variety of options, varying in quality and price, available not only as disposable batteries, but also as rechargeable batteries; sold almost everywhere. The main advantage of all replaceable cells is the ability to quickly change dead batteries for fresh ones (of course, if there is a reserve), while the original battery has to be charged — and this takes time and an external power source. As for AA, they have a relatively low power and capacity. These characteristics are sufficient for relatively compact devices; however, for models that need to power mechanical drives (for example, for CDs) and/or provide high sound power, “AA” batteries are poorly suited, and therefore are rarely used in them.
— AAA batteries. Replaceable elements, known as "mini-finger" or "little fingers". In general, they are similar to the AAs described above and differ from them only in small sizes and, as a result, less power. Because of this, such power is used only in the most compact models of audio systems, which do not require high power, but small sizes are crucial.
— Batteries C. Replaceable cells known as "Baby". The features of replaceable cells are generally desc
...ribed in AA Batteries above; here we note that C batteries have a cylindrical shape and are similar in length to “finger-type” batteries, but are much thicker, due to which they are distinguished by higher power and can be used in rather “gluttonous” systems.
— D batteries. Replacement cells, the largest variety of standard cylindrical batteries used in modern audio systems. Used in the most powerful models that require a large amount of energy.
— Batteries. This parameter is indicated in our catalog in two cases: if the device uses standard replaceable elements that do not belong to any of the standard sizes described above, or if the battery size is not indicated in the manufacturer's official data.
— Accumulator. Powered by its own original battery, which is not related to standard sizes, and in some models is also non-removable. On the one hand, this option eliminates the need to constantly buy replacement batteries (or significantly spend money once on rechargeable batteries), moreover, the battery is usually supplied as a kit. However, when the charge is exhausted, in most cases the only option is to charge from an external power source — and this requires not only the presence of such a source, but also a fairly large amount of time.