Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Kospel EKCO.LN2M 24 24 kW
400 H
vs Vaillant eloBLOCK VE 12 12 kW
400 H

Add to comparison
Kospel EKCO.LN2M 24 24 kW 400 H
Vaillant eloBLOCK VE 12 12 kW 400 H
Kospel EKCO.LN2M 24 24 kW
400 H
Vaillant eloBLOCK VE 12 12 kW
400 H
Outdated Product
from $594.48 up to $725.04
Outdated Product
User reviews
0
0
11
TOP sellers
Main
An energy-efficient Wilo circulation pump with frequency control is used. 6 power levels.
For use with an indirect heating boiler, you must additionally purchase a three-way valve with a servomotor and an outdoor temperature sensor. This modification comes without an expansion tank.
6 power levels. Connecting a thermostat. Expansion tank 7 L. Frost protection.
The model from 2019 has a new look, the name remains old, please specify this point when buying.
Energy sourceelectricityelectricity
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area192 m²90 m²
Additional equipment
Remote control unit
Technical specs
Heat output24 kW12 kW
Min. heat output6 kW
Power supply400 V400 V
Rated current36.5 А
Coolant min. T20 °С25 °С
Coolant max. T85 °С85 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
Outdoor temperature sensor
"Summer" mode
Heated floor mode
Circulation pump
Control buseBus
Programmable thermostat
Boiler specs
Efficiency99 %
Combustion chamberno chamberno chamber
Expansion vessel capacity6 L8 L
Connections
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
water overheating
water circulation failure
frost protection
water overheating
water circulation failure
frost protection
More specs
Dimensions (HxWxD)710x418x251 mm740x410x315 mm
Weight24 kg
Added to E-Catalogoctober 2020june 2012

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Remote control unit

Remote control unit that allows you to control the boiler from another room. It can be connected both wired and wirelessly, often equipped with an electronic display to indicate operating modes, set temperature, emergency situations, etc. Many of these units are advanced devices with the ability to programme the operation of the boiler, for example, for a week; some models can be equipped with temperature sensors that automatically adjust the intensity of the boiler depending on the temperature in the room.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Rated current

The current consumed by the electric boiler (see "Power source") during normal operation.

This parameter directly depends on the power. It is required primarily for organizing the connection: wiring and automation must safely deal with the current consumed by the unit.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Outdoor temperature sensor

The outdoor temperature sensor allows you to monitor the outdoor weather conditions and automatically adjust the operation of the boiler to them — increase the heating power when the outside temperature drops and decrease it when it rises.

Heated floor mode

The boiler has a special mode for underfloor heating systems.

Underfloor heating differs from conventional heating systems primarily by a lower coolant temperature — otherwise the floor could be too hot for comfortable use (plus, high temperatures are also undesirable for flooring and furniture installed on it). In addition, boilers with this function are distinguished by increased pump power. In order to ensure efficient circulation of the coolant through branched heating circuits that have rather high resistance.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).
Kospel EKCO.LN2M 24 often compared
Vaillant eloBLOCK VE 12 often compared