USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison XGIMI Elfin vs XGIMI Z8X

Add to comparison
XGIMI Elfin
XGIMI Z8X
XGIMI ElfinXGIMI Z8X
from $599.00 
Outdated Product
Outdated Product
TOP sellers
Main functionhomehome
Operating systemAndroid TVAndroid TV
Lamp and image
Lamp typeLEDLED
Service life30000 h
Brightness ANSI Lumens800 lm1200 lm
Dynamic contrast10 000:1
Sensor
TechnologyDLPDLP
Sensor size0.3"
Real resolution1920x1080 px1920x1080 px
Max. video resolution3840x2160 px
Image format support16:9, 16:10, 4:316:9, 4:3
HDR support
Projecting
Rear projection
Throw distance, min1.1 m0.76 m
Throw distance, max5.3 m6.72 m
Image size0.76 – 5.08 m0.76 – 7.62 m
Throw ratio1.2:11.2:1
Zoom and focusmotorizedmotorized
Autofocus
Auto keystone correction
Keystone correction (vert), ±40 °40 °
Keystone correction (horizontal), ±40 °40 °
Features
Features
DLNA support
3D support
 
voice control
voice assistant
DLNA support
3D support
multimedia (air mouse remote)
voice control
voice assistant
Bluetoothv 5.0v 4.0
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 4 (802.11n)
AirPlay+
Chromecast
Miracast
Hardware
CPUMSTAR 6A848
RAM2000 MB2000 MB
Built-in memory16 GB16 GB
USB 2.011
Speaker systemHarman KardonHarman Kardon
Number of speakers2
Sound power6 W
HDMI inputs11
HDMI versionv 2.0
Audio connectors
3.5 mm output (mini-Jack)
3.5 mm output (mini-Jack)
Service connectors
 
LAN (RJ-45)
General
Noise level (nominal)30 dB
Power sourcemainsmains
Power consumption65 W
Size (HxWxD)48x192x194 mm130x192x192 mm
Weight0.9 kg1.8 kg
Color
Added to E-Catalognovember 2021april 2021

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Sensor size

The size of the sensor affects the depth and final quality of the image. The larger the sensor, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Max. video resolution

The maximum resolution is closely related to both the overall picture quality and the screen size. The higher the resolution of the projector, the clearer the image details become, especially when viewing the picture on a large screen.

For the vast majority of tasks, a resolution ranging from HD (1280x720) to Full HD (1920x1080) is usually enough. If the projector will be used to play modern games, you should choose a model with a resolution from Quad HD (2560x1440) to 4K (3840×2160) and even 8K (7680x4320).

Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between Quad HD and 4K formats. A high-resolution picture will be able to express itself on a really big screen.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

HDR support

The projector supports HDR technology — high dynamic range.

This technology allows to expand the range of brightness displayed within a single frame — in other words, to display both very bright and very dark colours on the screen at the same time. Due to this, colour reproduction is noticeably improved; in addition, in very bright or very dark areas of the frame, small details remain visible that would not be visible in a normal image. At the same time, it is worth noting that all the benefits of HDR become noticeable only on a high-end screen with maximum dimming. In addition, this function significantly affects the cost of the projector, and the content must initially be recorded in HDR — and using exactly the technology that the projector supports (this point can be clarified in the instructions). Because of this HDR support is found predominantly among high-end home theater models (see "Main purpose").

Rear projection

The ability of the projector to operate in the rear projection mode (“mirroring” the image).

There are two main types of rear projection. Most often, horizontal mirroring is found in projectors — it is used when installing the device behind a translucent screen. Vertical inversion, in turn, is used in projectors with fixed keystone correction — due to their design, when mounted under the ceiling, such devices must be turned upside down, which requires the corresponding correction of the displayed image.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.
XGIMI Elfin often compared