USA
Catalog   /   Photo   /   Digital Cameras

Comparison Canon EOS R100 kit 18-45 vs Canon EOS 250D kit 18-55

Add to comparison
Canon EOS R100  kit 18-45
Canon EOS 250D  kit 18-55
Canon EOS R100 kit 18-45Canon EOS 250D kit 18-55
Compare prices 15Compare prices 48
TOP sellers
Main
Shooting 4K with a maximum bitrate of 120 Mbps. Dual Pixel CMOS AF technology. Intuitive menu interface. Touch rotary screen. Compact size and light weight.
Camera type"mirrorless" (MILC)digital mirror
Sensor
SensorCMOS (CMOS)CMOS (CMOS)
Sensor size
APS-C (22.3x14.9 mm) /22.3х14.9 mm/
APS-C (23x15.5 mm)
Total MP2626
Effective MP number2424
Maximum image size6000x4000 px6000x4000 px
Light sensitivity (ISO)100-25600100-51200
Sensor cleaning
RAW format recording
Lens
Mount (bayonet)Canon RF-SCanon EF-S, Canon EF
Kit lens
Aperturef/4.5 - f/6.3f/3.5 - f/5.6
Focal length18 - 45 mm18 - 55 mm
Optical zoom2.53
Manual focus
Image stabilizationis absentis absent
Photo shooting
HDR
White balance measuring
Exposure compensation± 2 EV, in 1/3 EV steps± 5 EV, in 1/2 or 1/3 EV steps
Auto bracketing
 /± 2 (3 frames in steps of 1/3 EV, 1/2 EV)/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 60 fps1920x1080 px 60 fps
Ultra HD (4K)3840x2160 px 25 fps3840x2160 px 25 fps
File recording formatsMP4 (H.264)MPEG-4, H.264
Manual video focus
Maximum video length
time limit
memory limit
time limit
memory limit
Connection ports
HDMI v 1.4
microphone Jack
HDMI v 1.4
microphone Jack
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
in face
Focus points3975 шт9 шт
Touch focus
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicoptical (pentaprism)
Viewfinder crop0.87 x
Frame coverage100 %95 %
Shutter speed1-1/4000 с30 - 1/4000 с
Continuous shooting6.5 fps5 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3 ''
Screen resolution1040 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards types
SD, SDHC, SDXC /Eye-Fi, UHS-I/
SD, SDHC, SDXC
Communications
Wi-Fi 4 (802.11n)
Bluetooth
smartphone control
Wi-Fi 4 (802.11n)
Bluetooth
smartphone control
Flash
Built-in flash
External flash connect
Power source
Power source
battery
battery
Battery modelLP-E17LP-E17
Shots per charge430 шт500 шт
General
Materialmagnesium alloyplastic
Dimensions (WxHxD)116х86х69 mm122х93х70 mm
Weight356 g449 g
Color
Added to E-Catalogjune 2023april 2019

Camera type

— Digital compact. This term refers to the simplest variety of modern digital cameras — those that are often called "soap dishes" in everyday life. As the name implies, these models are small in size, so most of them can be carried even in your pocket. Other specific features include a small sensor (see "Sensor Size"), a fixed lens, and a high degree of automation — digital compacts with full manual shooting options are the exception rather than the rule. In general, this type of camera is designed mainly for amateur shooting — in most cases, the image quality is quite sufficient for domestic purposes, but such devices are usually unsuitable for professional photography.

— “Mirrorless” cameras MILC (Mirrorless Interchangeable Lens Camera — literally “mirrorless cameras with interchangeable lenses”) are compact cameras that are a kind of hybrid between compact digital cameras and “DSLRs”. They are not equipped with a system of mirrors, the viewfinder (if any) is made electronic or optical (see below), which allows you to minimize the weight and dimensions of the camera. On the other hand, such devices use matrices of the same class as in SLR cameras, which ensures high quality shooting with a minimum of noise. As the name suggests, MILC cameras also typically work with interchangeable lenses.

— Digital SLR cameras. The most technically advanced class of digital cameras. It got its name from the system of mirrors installed in the...camera body; thanks to these mirrors, light enters the viewfinder directly through the lens (and not through the auxiliary window, as on compact cameras). As a result, the photographer sees what will be shot in real time, with high-quality colour reproduction and high brightness. It is also important that the "SLR" matrix is closed from light most of the time — the light hits it only at the time of shooting, due to which it practically does not heat up and the noise in the resulting image is minimized. The lenses of such cameras are made interchangeable, and many settings, unlike conventional digital cameras, can be set manually.

— For a mobile phone. Cameras designed to be installed on a smartphone as an external accessory and not designed for stand-alone use. Outwardly, such a device resembles a lens with a mount on the phone case; however, inside this “lens” there is a full-fledged matrix, an image processor and a Wi-Fi or Bluetooth wireless module for connecting to a smartphone. The smartphone itself, when used, simultaneously plays the role of a screen and a control device, in addition, footage can be immediately transferred to it. Technically, a similar camera can be connected to another gadget — for example, a tablet: it's not a fact that it can be fixed on the case, but the connection itself is quite possible.

Sensor size

The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/2.3" or 1/1.8" (accordingly, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — “vidicons” (the forerunners of modern matrices), partly a marketing ploy that gives buyers the impression that the matrices are larger than they actually are.

Anyway, at equal resolution (see Number of megapixels), a larger sensor size means a larger size of each individual pixel; accordingly, on large sensors, more light enters each pixel, which means that such sensors have a higher photosensitivity (see Light sensitivity) and a lower noise level, especially when shooting in low light conditions.

Most often in modern cameras there are such options:

1/2.3" and 1/1.7". Small matrices, typical for models without interchangeable lenses — compacts and digital ultrazooms(see "Camera type").

4/3. A kind of "transitional option" between small sensors of compact devices and large, but at the same time expensive "SLR" APS-C. The size of such a matri...x is 18x13.5 mm, which gives a diagonal of 22.5 mm (approximately 4/3 of the "Vidicon" inch described above, hence the name). It is used in SLR and "mirrorless" cameras (see "Camera type"), mainly entry-level, with Four Thirds and Micro Four Thirds mounts, respectively.

— APS-C. The size of matrices of this type can vary from 20.7x13.8 mm to 25.1x16.7 mm, depending on the manufacturer. They are widely used in entry-level and mid-level SLRs, as well as "mirrorless" models.

— APS-H. Somewhat larger than the APS-C described above (the size is 28.1x18.7 mm), otherwise it is almost completely the same.

— Full frame (or APS). The size of such a matrix is equal to the frame size of a classic photographic film — 36x24 mm. It is usually equipped with professional-grade SLR cameras.

— Big frame. This category includes all types of matrices, the size of which exceeds 36x24 mm (full frame). Cameras with similar sensors belong to the so-called medium format class and are, usually, professional models of the premium level. Large matrices allow you to use a resolution of tens of megapixels, while maintaining high clarity and colour quality, however, such devices cost accordingly.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Mount (bayonet)

The type of bayonet mount — mount for interchangeable lenses — provided in a SLR or MILC camera (see "Camera type"). Bayonets come in different sizes, and interchangeable lens specifications usually indicate which mount it is designed for. Most often, mounts of different types are not compatible with each other, but there are exceptions (sometimes directly, sometimes using adapters).

Also note that one brand can use different mounts for different classes of cameras — and vice versa, one mount can be used by several manufacturers. So, Canon releases cameras with mounts EF-M, EF-S, EF and Canon RF. Leica has Leica M, Leica SL, Leica TL. Nikon has in its arsenal Nikon 1, Nikon F, Nikon Z. Pentax — Pentax 645, Pentax K, Pentax Q. Samsung offers NX and NX-M mounts. Sony cameras have Sony A and Sony E, Fuji has Fujifilm G and Fujifilm X. And as an example of a mount used by different brands, one can cit...e Micro 4/3, which is widespread in Olympus and Panasonic cameras.

Aperture

Aperture of the lens installed in the camera or supplied with it in the kit (for models with detachable optics).

In a simplified way, this parameter can be described as the ability of the lens to transmit light - in other words, how much the light flux weakens when passing through the optics. It is believed that two main indicators affect the characteristics of light transmission: the size of the relative opening of the lens and its focal length. Aperture is the ratio of the first indicator to the second; in this case, the size of the active hole is taken as one and is generally omitted when recording, as a result, such a recording looks, for example, like this: f / 2.0. Accordingly, the larger the number after the fraction sign, the lower the aperture ratio, the less light the lens transmits.

Zoom lenses (zoom lenses), as a rule, have different aperture values for different focal lengths. For such optics, two values of this parameter are indicated in the characteristics, for the minimum and maximum focal lengths, for example, f / 2.8–4.5. There are also vario lenses that maintain a constant aperture over the entire range of focal lengths, but they are much more expensive than analogs with variable aperture.

The high light transmission of the lens is important if the camera is planned to be used for shooting in low light conditions or for shooting fast moving objects: high-aperture optics allow you to shoot at low sensor sensitivity (which...reduces the likelihood of noise) and at low shutter speeds (at which moving objects are less blurry) . This parameter also determines the depth of field of the imaged space: the higher the aperture ratio, the smaller the depth of field. Therefore, for shooting with artistic background blur (“bokeh”), it is recommended to use fast lenses.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.

HDR

Camera support for HDR.

HDR stands for High Dynamic Range. The main application of this technology is shooting scenes with significant differences in illumination, when there are both very bright and very dark areas in the frame. The features of modern digital photography are such that in the normal shooting mode, only a rather narrow range of brightness can be correctly processed; as a result, with a large difference in illumination, the image contains either too dark or overexposed fragments. HDR avoids this phenomenon: in this mode, the camera takes several shots with different exposure settings, and then glues them together in such a way as to reduce the brightness in bright places and increase in dark places. This allows you to shoot, for example, landscapes against the backdrop of a bright sunset sky, the interiors of dimly lit buildings with bright windows, etc. In addition, HDR can also be used as an artistic technique — to give the picture an unusual colour scheme.

Note that this effect can also be achieved using post-processing in a graphics editor; however, using the camera is much more convenient.

Exposure compensation

The ability to manually (or automatically, according to predetermined parameters) change the exposure parameters during shooting, that is, the amount of light falling on the matrix. It is used when the automatically selected exposure parameters do not give a satisfactory result — for example, in difficult conditions, when the illumination of the main subject and the background is very different. The camera's exposure compensation capabilities are recorded in the format "± x EV, in y EV increments", such as "± 3 EV, in 1/2 EV increments". The first digit indicates the maximum amount by which the exposure can be changed from the original value by the compensation process; the second is the step (step) with which the change occurs. EV is a specific unit of measure for exposure; a 1 EV change in exposure means a 2x change in the amount of light hitting the sensor. An increase in EV indicates an increase in the amount of light due to opening the aperture or an increase in shutter speed, a decrease indicates the opposite. All modern cameras with exposure compensation function are capable of producing it “in both directions”.
Canon EOS R100 often compared
Canon EOS 250D often compared