USA
Catalog   /   Computing   /   Components   /   Hard Drives

Comparison Seagate IronWolf ST4000VN006 4 TB
256/5400
vs Seagate Exos 7E8 ST4000NM000A 4 TB
512n SATA

Add to comparison
Seagate IronWolf ST4000VN006 4 TB 256/5400
Seagate Exos 7E8 ST4000NM000A 4 TB 512n SATA
Seagate IronWolf ST4000VN006 4 TB
256/5400
Seagate Exos 7E8 ST4000NM000A 4 TB
512n SATA
Compare prices 2
from $165.00 
Outdated Product
TOP sellers
Main
Suitable for 24/7 operation. AgileArray and IronWolf Health Management technologies. RV sensors.
Placementbuilt-inbuilt-in
TypeHDDHDD
Featuresserverserver
Size4000 GB4000 GB
Form factor3.5 "3.5 "
ConnectionSATA3SATA3
Manufacturer's warranty3 years5 years
Technical specs
Cache memory256 MB256 MB
RPM5400 rpm7200 rpm
Data transfer rate202 MB/s
Operation power consumption4.8 W
Standby power consumption3.96 W
Reading noise level27 dB
Standby mode noise level23 dB
MTBF2 M h
MTBF600 K
General
Size147x102x20 mm147x102x26 mm
Weight490 g649 g
Added to E-Catalogseptember 2022march 2020

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one.

RPM

For drives used in a PC (see "Intended use"), 5400 rpm(normal) and 7200 rpm(high) are considered standard speeds. There are also more specific options, including models with the ability to adjust the speed depending on the load. In server HDDs, in turn, higher speeds can be used — 10,000 rpm and even 15,000 rpm.

Data transfer rate

The speed of data transfer between the disk and client devices is determined by the type of drive, spindle speed, memory buffer size and connection connectors. The last parameter is the most important, since it is impossible to exceed the bandwidth of a particular interface.

Operation power consumption

The amount of power consumed by the disk when reading and writing information. In fact, this is the peak power consumption, it is in these modes that the drive consumes the most energy.

HDD power consumption data is needed primarily to calculate the overall system power consumption and power supply requirements for the system. In addition, for laptops that are planned to be used often "in isolation from outlets", it is advisable to choose more economical drives.

Standby power consumption

The amount of power consumed by the disk "idle". In the on state, the disk platters rotate regardless of whether information is being written or read or not — maintaining this rotation takes the energy consumed while waiting.

The lower the power consumption while waiting, the more economical the disk is, the less energy it consumes. At the same time, we note that in fact this parameter is relevant mainly when choosing a drive for a laptop, when energy efficiency is crucial. For stationary PCs, “idle” power consumption does not play a special role, and when calculating the requirements for a power supply, it is necessary to take into account not this indicator, but the power consumption during operation (see above).

Reading noise level

The level of noise produced by the disk when reading and/or writing information. The source of sound in this case is the moving plates of the disk, as well as the mechanics that control the reading heads. The lower the noise level, the more comfortable the use of the device. The maximum noise produced by modern hard drives during operation is about 50 dB — this is comparable to the sound background in an average office.

Standby mode noise level

The amount of noise produced by a disk "idle", when no read and/or write operations are performed. The sound source in this case is the plates — they rotate all the time while the disk is on; since no other mechanics are involved, idle noise is generally lower than read/write noise. The lower the noise level, the more comfortable the use of the device. The maximum noise level of modern hard drives in standby mode is about 40 dB — this is comparable to quiet human speech.

MTBF

Guaranteed (minimum) hard drive uptime. The longer the time between failures, the more durable and reliable the device. At the same time, we note that after this time, the drive will not necessarily fail immediately — most models remain operational even after the claimed resource has been exhausted, but the manufacturer does not give any guarantees here.

MTBF

Guaranteed (minimum) number of hard drive on-off cycles after which it will remain operational. The higher this number, the more reliable the drive.
Seagate IronWolf often compared