Dark mode
USA
Catalog   /   TVs & Video   /   TVs

Comparison Samsung QE-55QN700B 55 " vs Samsung QE-55QN91B 55 "

Add to comparison
Samsung QE-55QN700B 55 "
Samsung QE-55QN91B 55 "
Samsung QE-55QN700B 55 "Samsung QE-55QN91B 55 "
Outdated ProductOutdated Product
User reviews
0
0
0
1
TOP sellers
Size55 "55 "
Operating systemSmart TV (proprietary system)Smart TV (proprietary system)
CPUSamsung Quantum 8K
Display
MatrixQLEDQLED
Backlight typeMini LEDMini LED
Screen surfaceanti-glareanti-glare
Resolution7680x4320 px3840x2160 px
Upscalingup to 8Kup to 4K
Frame rate60 Hz120 Hz
HDR supportHDR10+HDR10+
Brightness / contrast enhancement
AMD compatibleAMD FreeSync Premium ProAMD FreeSync Premium Pro
Multimedia
Sound power60 W60 W
Number of speakers44
Subwoofer
Audio decodersDolby AtmosDolby Atmos
Digital tuner
DVB-T2 (terrestrial)
 
 
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S2 (satellite)
Picture-in-picture
Features
Features
Wi-Fi 5 (802.11ac)
Miracast
Bluetooth v 5.2
voice control
Amazon Alexa
Google Assistant
Bixby
Wi-Fi 5 (802.11ac)
Miracast
Bluetooth v 5.2
voice control
Amazon Alexa
Google Assistant
Bixby
Connectors
HDMI44
HDMI versionv 2.1v 2.1
Additional inputs
USB x3
LAN
USB x2
LAN
Outputs
optical
optical
General
Wall mountVESA 400x300 mmVESA 200x200 mm
Stand shape1 leg on the platform1 leg on the platform
Power consumption84 W
Energy efficiency class (new)F
Dimensions (WxHxD)1225x776x298 mm1227x768x236 mm
Dimensions without stand (WxHxD)1225x705x18 mm1227x706x26 mm
Weight24.4 kg21.9 kg
Color
Added to E-Catalogjune 2022june 2022

CPU

Sony X1. The Sony X1 processor is used in Sony TVs from several series: XH and XG. Such TVs occupy several niches at once: the low-cost category and the middle class. The most affordable models display a 4K resolution picture without support for high dynamic range (HDR), more advanced models use 4K HDR. Basically, these are simple models that are designed only for watching videos. For dynamic games, TVs with such a processor are less suitable.

Sony X1 Extreme. The Sony X1 Extreme processor is 40% more powerful than its predecessor, the Sony X1, and is designed to work with 4K HDR images. Working with HDR dynamic range makes it possible to display a realistic picture of increased quality on the screen. TVs with the Sony X1 Extreme processor are mid-range and high-end models. The image qualit is improved by supporting dynamic backlighting. An important feature of the Sony X1 Extreme is the use of two independent colour rendering databases (Dual database processing). Object-based HDR remaster technology analyzes the image displayed on the screen, matches colours with a database and adjusts them for viewing on a particular TV. Thanks to Super Bit Mapping 4K HDR, colour transitions become smoother and more natural, making the picture even more realistic.

Sony X1 Ultimate. The Sony X1 Ultimate processor can handle both 4K (3840 x 2160) and 8K HDR (...7680 x 4320) images, depending on the screen size. TVs with such a processor provide a picture with the deepest detail and the highest quality rendering of textures. TVs with the Sony X1 Ultimate processor are mostly advanced models from the middle and expensive segment. Such TVs provide the effect of complete immersion in the atmosphere of the video being watched. Sony X1 Ultimate supports X-Reality PRO technology with an exclusive database of colour reproduction samples. Even when displaying low-resolution images on a TV screen, the picture quality is automatically upscaled to 8K (4K) with HDR High Dynamic Range. There is support for X-tended Dynamic Range PRO technology, which distributes the backlight in accordance with the displayed scenes. Dynamic backlighting improves contrast and makes the picture as bright as possible, while blacks are more saturated than ever.

Sony Cognitive XR. TVs with Sony XR processor are capable of displaying a picture in 4K resolution at 120 Hz and 8K at 60 Hz. These are high-tech models operating under the control of advanced artificial intelligence. The Sony XR is one of the world's first "cognitive" processors. He processes the video and audio components of broadcasts to improve the quality of the image and sound, which creates a realistic picture of what is happening on the screen. The software algorithms of the processor process information about audio and video in a single stream. The manufacturer claims that the processor works akin to the human brain and goes beyond the capabilities of ordinary artificial intelligence algorithms.

— LG. The hierarchy of television image processors from LG includes several large Alpha families: α 5, α 7, α 8, α 9 and α 11. Each of them is described in more detail in the corresponding help paragraphs:

LG α 5. Alpha 5 processors are used in the brand’s inexpensive TV panels and perform minimal image processing. They cover a basic range of tasks such as improving colour reproduction, upscaling video to 4K and creating surround virtual sound.

LG α 7. Processors from the Alpha 7 line are found on board mid-range LG TVs with NanoCell and OLED matrices. Their advanced functionality includes automatic adjustment of image and sound parameters in accordance with the broadcast genre, as well as automatic adjustment of brightness and tones to suit the conditions of the surrounding space.

LG α 8. The Alpha 8 family is the true “golden mean” from LG. The debut of α 8 took place in 2024, and such processors are installed in the brand’s TVs with NanoCell and OLED panels. They are equipped with improved noise reduction and sharpening algorithms, support for Dolby Vision and other premium HDR formats (in most models), and advanced artificial intelligence functions for increasing image and sound quality in real time.

LG α 9. LG's flagship TVs are equipped with α 9 rank processors - in fact, they rely on deep machine learning algorithms to analyze the genre of broadcast video content and adapt image and sound parameters to it. Alpha 9 processors work with all applicable specifications of high dynamic range technology in LG TVs and have a professional sound identification system.

LG α 11. Alpha 11 processors will be installed in top models of LG OLED TVs starting in 2024. They are capable of working with frame formats up to 8K, while providing improved image scaling algorithms. The emphasis in the line of processors is on the highest computing power and developed functionality of AI algorithms for the finest adaptation of picture and sound.

Note that with each subsequent edition, LG image processors increase functionality. Their generations are designated by the prefix Gen with the serial number of the generation.

Samsung Crystal 4K. The Samsung Crystal 4K processor is used primarily in Samsung's Crystal UHD series TVs. This category of TVs has an affordable price. These are simple models, the screen of which produces a picture in Ultra 4K resolution. The performance of the Samsung Crystal 4K processor is enough to bring the colour quality to the level of HDR. Of the technologies used, we can note the Contrast Enhancer and Dynamic Crystal Color, thanks to which the contrast and brightness of the image are fine-tuned.

Samsung Quantum 4K. The Samsung Quantum 4K processor is used in Samsung TVs with QLED backlighting. High performance makes it possible to scale the image of Full HD to the level of 4K, and in the high dynamic range of HDR. The Samsung Quantum 4K processor features unique Quantum HDR technology, which makes the image more detailed, richer and more expressive. The processor supports Dual LED dynamic backlight technology, with which the picture acquires extreme contrast and at the same time high brightness. Also, the TVs have a special game mode Real Game Enhancer+ with support for AMD FreeSync technology.

Samsung Quantum 8K. The Samsung Quantum 8K processor has been used in Samsung QLED TVs since 2020. Models in this series are capable of reproducing 8K HDR images, and a picture of such high quality can be obtained even from a source with a resolution of 4K to Full HD. Usually, these are top-level models. TVs of this class can be used as part of a professional home theater. Deep detailing of the picture guarantees complete immersion in the video content. Artificial intelligence QLED TV is responsible for image processing.

Samsung NQ4 AI. Intelligent processor that provides high quality images and sound using artificial intelligence technologies. Used in mid-range Samsung TVs with OLED and Neo QLED matrices, it provides work with frame formats up to 4K (including image scaling from lower resolutions in real time). The processor supports flexible Quantum Matrix backlight control, and thanks to the AI ​​Customization function, the TV can independently determine the genre of video content, adjusting the brightness and contrast settings to achieve the effect of complete immersion in what is happening on the screen.

Samsung NQ8 AI. Top-level processor found in flagship 8K Samsung Neo QLED TVs. Relying on machine learning algorithms and a built-in NPU neural engine, the processor guarantees a great video viewing experience regardless of the input source. Samsung NQ8 AI supports real-time upscaling to 8K, ensures smooth and clear depiction of fast movements in the frame thanks to AI Motion Enhancer Pro, and Real Depth Enhancer Pro allows viewers to immerse themselves in the action on the screen. In parallel, the processor is tasked with processing multi-channel audio, optimizing images in games and for each scene, depending on the user’s preferences.

Note that Samsung NQ4 AI and NQ8 AI processors were released in several generations, designated by the Gen prefix with a serial version number. The newer the edition, the more advanced the processor is.

Philips P5 Perfect Picture. The Philips P5 Perfect Picture Processor is used in Philips OLED TVs. The processing power of the processor is enough to reproduce the 4K image. In older models, an extended dynamic range of HDR colours is found. TVs with the Philips P5 Perfect Picture processor cover several cost categories at once, the low-cost segment and the average price range. A high-quality picture is displayed on the screen of such models, but, usually, it falls short of the reference Ultra 4K HDR, since this requires a more professional matrix. The P5 Perfect Picture processor is the first Philips CPU to use artificial intelligence. Philips P5 Perfect Picture supports technologies such as Dolby Vision, HDR10+, Perfect Natural Motion and Micro Dimming Pro.

Philips P5 Pro Perfect Picture. The Philips P5 Pro Perfect Picture Processor is used in Philips TVs with enhanced OLED. Models with this processor are capable of displaying an image in Ultra 4K HDR resolution. Usually, it is found in advanced class TVs. Philips P5 Pro Perfect Picture processor TVs use a machine intelligence neural network interface. Google Assistant and Amazon Alexa voice assistants are supported. The processor uses the following image and sound technologies: Dolby Vision, Dolby Atmos, HDR10+, Micro Dimming Perfect and Wide Color Gamut.

Resolution

Screen resolution - its size in pixels horizontally and vertically. Other things being equal, a higher resolution provides better image quality, but such a screen costs more and requires relevant content.

The set of resolutions found in modern TVs is quite extensive, but they can be roughly divided into several groups: HD, Full HD, Ultra HD 4K, Ultra HD 5K and Ultra HD 8K. Here are the main features of each option:

— HD. Screens designed for HD 720p. The standard frame size in such a video is 1280x720, however, for a number of reasons, most HD TVs have somewhat larger sizes — 1366x768. In addition, this category usually includes models with resolutions from 1280x768 to 1680x1050, as well as 1024x768 screens. In general, HD 720p resolutions are mostly found on low-cost TVs with relatively small screens.

— Full HD. TVs designed for Full HD 1080p video, with a frame size of 1920x1080. Most models from this category have exactly this screen resolution — 1920x1080; other options are noticeably less common — in particular, 1920x1200 and 2560x1080. In general, Full HD screens provide good detail at a relatively low cost, making them extremely popular in mid-range models and inexpensive large-format TVs.

— Ultra HD 4K. This format provides different options in resolutions, however, for TVs, the actual stan...dard is 3840x2160, other options are almost never found. In general, this is a fairly high resolution, which is typical mainly for premium models; a common feature of such models is the large size — from 40" and more.

— Ultra HD 5K. The Ultra HD image format is more advanced than 4K, but it is extremely rare in TVs — these are mainly ultra-wide models with a resolution of 5120x2160.

— Ultra HD 8K. A standard that assumes a size of about 8K pixels horizontally; one of the options for this resolution, found in TVs — 7680x4320. Thus, UHD 8K is twice the size of 4K on each side and four times the total number of pixels, resulting in extremely sharp and detailed images. On the other hand, such screens are very expensive, despite the fact that nowadays even 4K is already considered a very advanced standard. Plus, there are not many video devices and content that meet this standard. Therefore, 8K TVs are still extremely rare, they include mostly high-end flagship models with a size of at least 65".

Upscaling

TV support for Upscaling function. This feature is only available on models with 4K and 8K resolution screens.

Upscaling to 4K allows you to increase the resolution of the original “picture” to 4K (3840x2160), if it was initially lower - for example, viewing a movie in 4K that was originally recorded in Full HD (1920x1080). In this case, we are not just talking about “stretching” the image to fill the entire screen (all TVs are capable of doing this), but about special processing, thanks to which the actual video resolution is increased. Of course, such video will still be inferior to content originally recorded in 4K; however, upscaling provides a noticeable improvement in quality compared to the raw signal.

Upscaling to 8K works on the same principle, only relevant for 8K TVs.

Frame rate

The highest frame rate supported by the TV.

Note that in this case we are talking specifically about the screen’s own frame rate, without additional image processing (see “Index of dynamic scenes”). This frequency must be no lower than the frame rate in the video being played - otherwise there may be jerks, interference and other unpleasant phenomena that degrade the quality of the picture. In addition, the higher the frame rate, the smoother and smoother the movement in the frame will look, and the better the detail of moving objects will be. However, it is worth noting here that playback speed is often limited by the properties of the content, and not by the characteristics of the screen. For example, films are often recorded at a frequency of only 30 fps, or even 24 - 25 fps, while most modern TVs support frequencies of 50 or 60 Hz. This is enough even for viewing high-quality content in HD resolutions (speeds above 60 fps in such video are extremely rare), but there are also “faster” screens on the market: 100 Hz, 120 Hz and 144 Hz. Such speeds, as a rule, indicate a fairly high class of the screen; they also often imply the use of various technologies designed to improve the quality of dynamic scenes.

Digital tuner

Types of digital tuners (receivers) provided for in the design of the TV.

Such tuners are necessary for receiving digital TV broadcasts; for normal operation, the broadcast standard must match the type of tuner (with some exceptions, see below). Note that the receivers are also available as separate devices; however, it is easier (and often cheaper) to buy a TV with a built-in tuner of the desired format. In modern TV you can find terrestrial tuners DVB-T2, cable DVB-C and satellite DVB-S and DVB-S2, here are their main features:

— DVB-T2 (terrestrial). The main modern standard for digital broadcasting. Such broadcasting has a number of advantages over traditional analogue broadcasting: it allows higher resolution and multi-channel audio transmission, with better sound and picture quality, and this quality is fully preserved until the signal weakens to a critical level. However, in some countries digital terrestrial broadcasting is just being put into operation, so it will not hurt to check the availability of DVB-T2 coverage in your area.

— DVB-C (cable). The main modern standard for digital broadcasting in cable networks. Despite the advent of the more advanced DVB-C2, it still continues to be widely used, and most likely this situation will not change for a long time.

— DVB-S (satellite). The first...generation of the digital DVB standard for satellite broadcasting. Nowadays, it is relatively rare due to the advent of a more advanced DVB-S2, which is also backwards compatible with the original DVB-S.

— DVB-S2 (satellite). The most advanced and popular of today's digital satellite broadcasting standards. Being the heir to DVB-S, has retained compatibility with it; therefore, manufacturers often limit themselves to installing only a DVB-S2 tuner on their TVs — it allows you to receive both major satellite broadcast formats.

Additional inputs

The TV's connectivity options are based not only on wireless technologies (described above), but also on a wired connection. In particular, additional video transmission can be carried out through VGA, composite AV connectors . Some of them also provide sound transmission, in addition to which there may be a mini-Jack (3.5 mm) and other ports for communication with external devices. More about them:

USB. Connector for connecting external peripheral devices. The presence of USB means at least that the TV is capable of playing content from flash drives and other external USB media. In addition, there may be other ways to use this input: recording TV programs to external media, connecting a WEB camera (see same paragraph), keyboard and mouse to use the built-in browser and other software, etc. The specific set of options depends on the functionality of the TV, it should be specified separately in each case.

Card reader. A device for working with memory cards, most often in SD format. The main use of the card reader is to play content from such cards on a TV; such an opportunity is especially convenient for viewing materials from photo and video cameras — it is in such devices that memory cards are widely used. There may be other ways to use this function — fo...r example, recording from the broadcast or even exchanging files between the card and the TV's storage. It is worth bearing in mind that SD cards have several subtypes — original SD, SD HC and SD XC, and not all of them may be supported by the card reader.

— LAN. Standard connector for wired connection to computer networks (both local and the Internet). Mostly found in models with Smart TV support (including Android TV devices; see related paragraphs). A wired connection is less convenient than Wi-Fi, not as aesthetically pleasing, so manufacturers place more emphasis on a wireless connection, as a result of which the speed indicators of the LAN connector are not indicated, and in some cases may be unacceptable for 4K broadcasts.

— VGA. Analogue video input, also known as D-sub 15 pin. Initially, the VGA interface was developed for computers, but due to the emergence of more advanced standards like HDMI (see below) and technical limitations (the maximum resolution is only 1280x1024, the inability to transmit sound), it is considered obsolete and is used less and less. So it makes sense to specifically look for a TV with such a connector mainly in cases where it is planned to be used as a monitor for an outdated computer or laptop.

– Composite AV input. Analogue input for video and audio transmission. Previously, it consisted of 3 RCA sockets (yellow for video, white and red for audio) and was connected to the equipment accordingly. Now in many models you can find an AV output, which is a single connector in the “headphone” format, to which a tee cable is already connected (check availability in the package).

— COM port (RS-232). A connector originally designed for computer equipment. In TVs, it is used as a service interface: for troubleshooting, updating firmware, adjusting TV parameters and various calibrations, integrating the TV into centralized remote control systems, etc. Note that the COM port may differ in shape and contact group in different TV models. It is often designated as RS-232C.

Wall mount

Most TVs have a VESA wall mount which may vary in size. The basis for such mount is a rectangular plate with four holes for screws in the corners. The main characteristic of such a mount is the distance between the holes — it is measured along the sides of the rectangle and is expressed in two numbers. The original VESA format is 100x100, these mounts are used for most medium-sized LCD TVs. For small screens, 75x75 mounts are provided, for large ones — 200x200 and more (up to 800x400).

However, there are also models that are equipped with a standard (proprietary) mount from the manufacturer. Mostly these are either ultra-thin TVs or designer lines. Anyway, the mount in the kit is suitable only for the selected model.

Power consumption

The electrical power normally consumed by the TV. This parameter strongly depends on the screen size and sound power (see above), however, it can be determined by other parameters — primarily additional features and technologies implemented in the design. It is worth noting that most modern LCD TVs are quite economical, and most often this parameter does not play a significant role — in most cases, power consumption is about several tens of watts. And even large models with a diagonal of 70 – 90" consume about 200 – 300 W — this can be compared with the system unit of a low-power desktop PC.

Energy efficiency class (new)

This parameter characterizes the efficiency of electricity consumption. Classes are designated in Latin letters from A to G, in ascending order of energy consumption. Actually, this was originally conceived, until more energy-efficient models pulled up to class A, which eventually received the marking A +, A ++, A +++. Further development of technology has made it possible to go even further, and in order not to produce pluses in energy efficiency labeling, in March 2021, manufacturers returned to the previous indices from G to A, where A is the most energy efficient TV. Accordingly, the 2021 models will have modern markings, while older models will be marked in the same way. Accordingly, now energy efficiency G, F, E has become the most popular, and models with energy efficiency A, D, C are rare.
Samsung QE-55QN700B often compared
Samsung QE-55QN91B often compared