USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Realme GT Neo3 150W 256 GB / 12 GB vs Realme GT Neo3 256 GB / 12 GB

Add to comparison
Realme GT Neo3 150W 256 GB / 12 GB
Realme GT Neo3 256 GB / 12 GB
Realme GT Neo3 150W 256 GB / 12 GBRealme GT Neo3 256 GB / 12 GB
Compare prices 1Outdated Product
TOP sellers
Display
Main display
6.7 "
2412х1080 (20:9)
394 ppi
AMOLED
120 Hz
Gorilla Glass v5
6.7 "
2412х1080 (20:9)
394 ppi
AMOLED
120 Hz
Gorilla Glass v5
Brightness1300 nit1300 nit
Display-to-body ratio88 %88 %
DCI-P3
Hardware
Operating system
Android 12.0 /realme UI/
Android 12.0
CPU modelDimensity 8100Dimensity 8100
CPU frequency2.85 GHz2.85 GHz
CPU cores88
Processor rating AnTuTu50
GPUARM Mali-G610 MC6ARM Mali-G610 MC6
RAM12 GB12 GB
RAM typeLPDDR5LPDDR5
Memory storage256 GB256 GB
Storage typeUFS 3.1UFS 3.1
Memory card slotabsentabsent
Liquid cooling
Test results
AnTuTu Benchmark872 000 score(s)872 000 score(s)
Wild Life (Extreme)1468 score(s)1511 score(s)
Main camera
Lenses3 modules3 modules
Main lens
50 MP
f/1.88
24 mm
84 °
Sony IMX766, 1/1.56"
50 MP
f/1.9
24 mm
 
1/1.56"
Ultra wide lens
8 MP
f/2.25
15 mm
119 °
1/4"
8 MP
f/2.3
15 mm
120 °
1/4"
Macro lens
 /2 MP, f/2.4/
 /2 MP/
Full HD (1080p)60 fps60 fps
4K60 fps60 fps
Slow motion (slow-mo)
480 fps /720p/
480 fps /1080p/
Image stabilizationopticaloptical
Flash
Front camera
Form factorin displayin display
Main selfie lens
16 MP /Samsung S5K3P9/
16 MP
Aperturef/2.45f/2.5
Field of view82 °78 °
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
5G
CDMA
5G
CDMA
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 6 (802.11ax)
Bluetooth v 5.3
aptX HD
NFC
Wi-Fi 6 (802.11ax)
Bluetooth v 5.3
aptX HD
NFC
Inputs & outputs
USB C
USB C
Features and navigation
Features
in-display fingerprint scanner
stereo
noise cancellation
gyroscope
light sensor
in-display fingerprint scanner
stereo
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
aGPS
GPS module
Dual GPS
GLONASS
 
digital compass
Power supply
Battery capacity4500 mAh5000 mAh
Battery life (PCMark)8.5 h8.5 h
DxOMark test (battery)8484
Fast chargingRealme Dart ChargeRealme Dart Charge
Charger power150 W80 W
Fast charging time50% in 5 min100% in 32 min
General
Bezel/back cover materialplastic/plasticplastic/plastic
What's in the box?
case
screen protector
charger
case
 
charger
Dimensions (HxWxD)163.3x75.6x8.2 mm163.3x75.6x8.2 mm
Weight188 g188 g
Color
Added to E-Catalogmay 2023august 2022

Processor rating AnTuTu

End-to-end processor rating (regardless of chipset manufacturer) for Android smartphones. It is based on a set of maximum performance indicators of the processor itself, the memory bus, the graphics core, etc. Processor ratings can be useful to enable comparison and easy selection of similar models.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

Wild Life (Extreme)

The result was shown by the device when passing the Wild Life (Extreme) performance test (benchmark) from 3DMark.

The Wild Life (Extreme) benchmark offers two ways to test graphics performance: a quick test that evaluates instantaneous performance, and a longer test that subjects the device to sustained load. This way one can evaluate how stable performance remains and does not drop due to overheating or throttling. The benchmark is cross-platform, which makes it possible to compare devices running different OSs and even different classes (for example, smartphones and laptops).

It is important to understand that this test does not provide absolute accuracy. The same device can show different results — they depend on many factors not directly related to the system. The error caused by these factors is often on the order of 5–7%. So we can talk about a significant difference between the two models being compared if the difference in performance goes beyond the mentioned error.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

Ultra wide lens

Specs of the ultra wide-angle lens of the main camera installed in the phone.

These details are relevant only for cameras with several lenses (see "Number of lenses") — and not all, but only those where there is a lens with a small focal length (much less than in the main lens) and, accordingly, wider viewing angles. It is called ultra-wide. In the same paragraph, four main parameters can be indicated: resolution, aperture ratio, focal length and additional sensor data.

Resolution(in megapixels, MP)
The resolution of the sensor used for the ultra-wide lens.

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture" allows you to capture small details better. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality — due to the smaller size of each individual pixel, the noise level increases. As a result, the direct resolution of the camera has little effect on the quality of photos and videos — a lot also depends on the size of the sensor, the features of the optics and various design tricks used by the manufacturer. At the same time, we note that the more megapixels a camera has, the more likely it is to implement various additional solutions aimed at improving image quality.

As for the specific resolution of ultra-wide optics, it can co...rrespond to the number of megapixels in the main lens (see "Main lens") or be lower, sometimes quite noticeable (for example, 8 MP with the main optics at 48 MP). This is due to the fact that an ultra-wide-angle lens often plays a secondary role, for which a small resolution is more than enough.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, that is, for example, an f/2.6 lens will transmit less light than f/1.9.

High aperture gives the camera a number of advantages: it allows you to shoot at low shutter speeds, minimizing the likelihood of “shake”, and also makes it easier to shoot in low light and shoot with artistic background blur (bokeh). However, for an ultra-wide lens, such features are not as important as for the main camera — such lenses usually have a specific purpose, and their small aperture is often more desirable, which allows you to increase the depth of field. So in general, this parameter is more of a reference than practically significant when choosing.

Focal length
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the sensor. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles).

Anyway, the viewing angle and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller viewing angle and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. Ultra-wide optics, by definition, must have very short focal lengths — smaller than the corresponding main optics. However, "ultra-wide" focal lengths typically range from 13 mm to 26 mm; such values are not rare among the main lenses. At the same time, there is nothing illogical here — the point is the ratio of focal lengths in each individual smartphone. For example, a camera with a 25mm primary lens can carry a 16mm or 17mm ultra-wide lens; and models with a primary lens less than 24mm usually do not have additional ultra-wide optics at all, since the existing lens perfectly plays this role just fine. Also note that the difference between these types of optics is not as significant as one might imagine; and in some devices, both focal lengths are generally the same, while the difference in specialization is achieved due to the features of image processing in each lens.

Field of view(in degrees) It is the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this angle, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, the field of view data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras in this way. As for specific values, ultra-wide-angle optics, by definition, have very wide angles — from 107° and above; in some models, this figure reaches 125°.

Additional Sensor Data
Additional information regarding the sensor installed in the ultra-wide lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-class sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/3.1" sensor will be larger than 1/4". Larger sensors are considered more advanced, as they provide a better image at the same resolution. This is due to the fact that due to the larger sensor area, each individual pixel is also larger and receives more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. However, in ultra-wide lenses, the sensors are generally noticeably smaller than in the main ones — for example, the mentioned 1/3.1" and 1/4" are quite common options. This is primarily due to the secondary role of such cameras.

Aperture

Aperture of the main lens of the front camera installed in the phone. For models with several lenses (see "Front camera" — "Number of lenses"), the main one is the lens which is responsible for the main part of the shooting and does not have a pronounced specialization (auxiliary, ultra-wide-angle, etc.).

This parameter is indicated by a fraction, for example f/1.7; the smaller the number in denominator, the higher the aperture ratio, the more light the lens is able to transmit. Theoretically, a better aperture improves low-light performance, reduces motion blur, and can be useful for creating beautiful background blur; however, in fact, looking for a fast front camera(f/1.9 and better) makes sense mainly in cases where you plan to take selfies often and in large quantities and want to achieve the maximum quality of such pictures.

Navigation

Navigational features provided by a device, usually a smartphone.

It is almost mandatory for a modern smartphone to have a GPS module and a digital compass. In addition, aGPS is often provided to speed up work, and Dual GPS to improve accuracy. Here is a more detailed description of these features:

— aGPS. An auxiliary feature that allows you to speed up the start of the main GPS receiver. To work for its main purpose, such a receiver must update data on the location of navigation satellites; Obtaining this data in the classical way, directly from the satellites themselves, can take quite a long time (up to several minutes). This is especially true for the so-called "cold start" — when the receiver starts up after a long break in operation, and the data stored in it has become completely outdated. aGPS (Assisted GPS) allows you to receive up-to-date service information from mobile network — from the nearest base station (this feature is supported by most mobile networks nowadays). This can greatly speed up the startup process.

— GPS module. Navigation module that allows you to determine the current coordinates of the device through the GPS satellite navigation system. GPS is the oldest and most common of these systems. The standard accuracy of modern receivers of this standard is about 6 – 8 m, and with the use of special technologies — several decimetres. As for the GPS-mod...ules in phones, they only provide the current location; How this data is used may vary depending on the operating system and installed applications. Among the most common options are map navigation (including track recording), geotagging photos and posts on social networks, searching for various objects nearby (attractions, transport stops, shops, hotels, cafes / restaurants, emergency services, etc.) , displaying the user's location (for example, to a taxi or delivery service), etc.
Notes to this paragraph may indicate additional systems supported by satellite receivers — for example, the European Galileo system. The exception is the Russian GLONASS, compatibility with which is specified separately (see below).

— Dual GPS. Additional feature found in modern GPS receivers (see above). Such receivers do not operate at one frequency, like traditional modules, but at two ("L1 + L5") — thus receiving two signal packets at once and comparing them with each other. This type of work significantly improves positioning accuracy — in some cases up to 10 – 20 cm. In addition, Dual GPS allows you to correctly process signals reflected from tall buildings — this increases efficiency in dense urban areas. However, it is worth noting that it is not always possible to use all the advantages of this feature. Full support for L5 is available only in the European Galileo system; in GPS (as of 2020), only about half of the satellites carry out such broadcasting, and in GLONASS it is not expected before 2030. In addition, compatibility may be limited by the capabilities of the smartphone: for example, in some models, Dual GPS mode becomes available only after a firmware update.

— GLONASS. Ability to use the GLONASS satellite navigation system. It is a Russian alternative to the American GPS, also providing global coverage. In standard mode, it almost does not differ in accuracy from GPS (about 5 – 10 m), but in special modes it is noticeably inferior (2.8 m versus 30 cm). Therefore, in modern smartphones, GLONASS is practically not used as the main navigation system — usually compatibility with it is provided as an additional feature of the GPS module. The ability to receive signals from two satellite systems at once has a positive effect on the quality of navigation, especially in dense urban areas, indoors and in mountainous areas: the number of dead zones decreases, the satellite search time decreases, and positioning accuracy improves.

— Galileo. European satellite navigation system, created as an alternative to the American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system gives an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, the Galileo system provides a more accurate position measurement, especially in densely populated areas.

— Digital compass. An electronic analogue of a conventional compass: a module that allows you to determine the direction to the cardinal points. Usually, it uses the same principle of operation, and the design is based on a miniature magnetic sensor. Along with the GPS module, it is an almost mandatory feature for modern smartphones. However digital compasses for the most of them are not accurate — but this drawback is not critical, since in the case of a smartphone, such accuracy is extremely rarely required.

Battery capacity

The capacity of the battery that the mobile phone is equipped with.

Theoretically, the high capacity of the battery allows the device to work longer on one charge. However, actual battery life time will also depend on the power consumption of the gadget — and it is determined by the hardware specs, the operating system, special solutions provided in the design, etc. So in fact, phones with capacious batteries in general have "long battery life”, however, the actual battery life can differ markedly even for two models with similar specifisations. Therefore, for an accurate assessment, it is better to focus not on the battery capacity, but on the operating time in different modes directly claimed by the manufacturer (see below).

Charger power

The power at which the phone is charged in normal mode.

The higher the charging power, the less time spent on it (with the same battery capacity). Thus, very fast charging means charging power of 65 W or more. But this parameter does not directly affect compatibility with chargers: modern devices are able to work with “chargers” of both higher and lower power. At the same time, in the first case, the battery controller will automatically limit the charging current, and in the second, charging will simply take more time. Accordingly, the standard charger may be of less power. And when looking for a third-party charger, you should focus on the allowable charging power indicated in the specifications — this will give the maximum guarantee against malfunctions.
Realme GT Neo3 150W often compared
Realme GT Neo3 often compared