Dark mode
USA
Catalog   /   Camping & Fishing   /   Camping   /   Flashlights

Comparison Videx VLF-A055H vs Fenix HM50R XM-L2 U2

Add to comparison
Videx VLF-A055H
Fenix HM50R XM-L2 U2
Videx VLF-A055HFenix HM50R XM-L2 U2
Outdated ProductCompare prices 1
User reviews
0
0
0
1
TOP sellers
Main
Bright light. Battery powered. Can be used without elastic strap. Carrying clip and magnetic fastening. Humidity protection IP68.
Compatible with frost-resistant CR123A batteries, which allows you to withstand temperatures down to -40 °C
Type
compact
head lamp
L-shaped
compact
head lamp
L-shaped
Specs
Lamp typelED with reflectorlED with reflector
Diode modelLuminus SST-20Cree XM-L2 U2
Number of diodes1 pcs1 pcs
Max. luminous flux600 lm500 lm
Lighting range115 m80 m
Max. operating time2.75 h128 h
Brightness levels24
Additional modes
2 pcs
stroboscope
SOS
 
 
 
Power supply
Power source1x163401x16340
USB charging port++
Charge level indicator
In box
In box
USB charging cable
battery(s)
carrying clip
 
battery(s)
 
General
Shockproof
Water protectionIP68IP68
Reflective elements
Built-in magnet
Materialmetalmetal
Length7.5 cm6.7 cm
Weight60 g68 g
Color
Added to E-Catalognovember 2021february 2018

Diode model

Model of the LED(s) used in the flashlight. Knowing the exact name of the LED, you can find its detailed characteristics and evaluate the capabilities of the flashlight. In addition, this information may be useful when replacing a failed diode.

Note that the LED model is indicated mainly if it is a high-quality LED with advanced characteristics. Such light sources are produced by different manufacturers, but the most popular in modern flashlights are products from Cree with its series Cree XM, Cree XP, Cree XHP. Here are some of the most common LEDs from this brand: Cree XP-L, Cree XM-L2, Cree XP-E, Cree XP-G, Cree XM-L T6, Cree XM-L2 T6, Cree XM-L U2, Cree XM- L2 U2, Cree XP-G R5, Cree XP-G2 R5, Cree XP-E Q5.

Cree XM-L and XM-L2 series diodes are used in high-power flashlights. XP-G and XP-G2 are used in relatively small models. They produce a beam of light in the shape of a circle with a darkening inside when using a reflector to focus. XP-E and XP-E2 are a godsend for small items with an evenly f...ocused beam and even illumination on the sides. The number “2” in the designation of the diode model indicates increased brightness (compared to the basic modification). The XHP series is also gaining popularity - the LEDs in this line more than double the light flow. At the same time, they are compatible with standard printed circuit boards and optics. The numerical prefix 35/50/70 in the name of XHP diodes indicates the dimensions of the housing.

Along with solutions from Cree, high-quality LEDs from the American manufacturer Luminus are often found in flashlights. Its range includes both inexpensive diode options for budget flashlights and advanced LED light sources with high luminous brightness and luminous flux intensity for the most powerful flashlights.

A separate case is represented by diode plates made using COB technology (chip-on-board, that is, “chip on a board”). Such plates are arrays of a large number of miniature light sources, soldered directly into a printed circuit board at a short distance from each other and filled with a special composition; This composition performs two functions at once. First of all, it protects the LEDs from contact with air, which increases their service life; In addition, the coating effectively diffuses light, creating a uniform luminous flux.

Note that previously, to create LED arrays, SMD technology was mainly used, with individual LEDs soldered onto the surface of a printed circuit board. However, COB is a more modern and advanced option: this technology allows small but bright light sources to be placed at very high densities, achieving powerful lumen output even with small array sizes. In addition, SMD boards did not provide a protective coating.

In general, it makes sense to pay attention to flashlights with COB plates if you need a high-quality source of diffused light. As a result, such diode arrays are especially popular in travel lanterns and auxiliary lighting (see "Type"), but can also be used in other varieties - from ultra-compact key fobs to high-power hand-held lamps.

Max. luminous flux

The maximum luminous flux provided by the lantern.

Luminous flux (denoted in lumens) can be described as the total amount of light produced by an LED or other light source and distributed in all directions where this source shines by itself (without lenses, reflectors, etc.). In fact, this means that the capabilities of the flashlight depend not only on the luminous flux, but also on the angle of illumination (see "Angle of illumination (light)"). For example, a relatively weak stream can be concentrated into a narrow beam, providing good range; and a large number of lumens will inevitably be needed to effectively cover a wide area.

Note that the coverage angle is not always specified in the characteristics, and even with such data it is difficult to immediately assess the real capabilities of the flashlight. Therefore, for such an assessment, it is best to use information about the actual illumination range (see below), and also take into account the general type of device (see above). For example, for the same number of lumens, a handheld flashlight with a reflector to form a directional beam will give a noticeably greater range than a tourist lamp with 360 ° coverage.

It should also be borne in mind that the high brightness of the flashlight is far from always justified, and it is worth choosing according to this parameter, taking into account the actual conditions of use. S...o, when working at short ranges, bright light can become a hindrance: it tyres the eyes and can blind others. In addition, an increase in brightness usually requires more powerful sources of both light and power, and the weight and dimensions of the lantern increase accordingly.

Lighting range

The maximum range at which the flashlight provides any effective illumination of objects. Different manufacturers have different criteria for this efficiency when measuring ranges, and therefore it is only possible to unequivocally compare among themselves in range only models of one manufacturer. At the same time, this parameter allows us to compare models from different manufacturers with some certainty: for example, flashlights with a lighting range of 15 m and 100 m will clearly belong to different range classes, regardless of manufacturers.

Note that the range of illumination depends not only on the maximum luminous flux provided by the lantern (see above), but also on the features of its design: the narrower the beam is provided by the reflector of the lantern, the greater the range will be, and vice versa — scattered light does not spread far. Some models allow you to adjust the beam width depending on the requirements of the situation (for more details, see "Adjusting the focus").

It is also worth bearing in mind that models with the same claimed lighting range can cover different spaces. For example, a hand lamp (see Type) with a reflector diameter of 20 cm will be able to provide a wider beam than a conventional hand lamp with a 5 cm reflector. And although in both cases the objects that fall into the light spot will be illuminated in the same way, however, in the first case, the size of the spot itself will be larger, and the actual efficien...cy of the flashlight will be correspondingly higher (in light of the fact that it is easier to "feel" individual objects with a wide beam, especially at a considerable distance).

Max. operating time

Maximum runtime of the flashlight without changing batteries or recharging the battery.

Note that in models with brightness control, this time is indicated for the most modest and, accordingly, economical mode. For example, in a flashlight with a maximum luminous flux of 1000 lm, the claimed operating time of 20 hours can be achieved at a brightness of only 30 lm, and at maximum battery life may not exceed half an hour. These nuances should be clarified according to the detailed characteristics. However, also note that additional modes of operation (see below) are not taken into account in this case: for example, if the flashlight from our example in SOS mode can operate for 30 hours, the characteristics will still state 20 hours.

It is also worth bearing in mind that for models with replaceable batteries, the actual operating time will also depend on the quality of such batteries. For example, for flashlights for AA and AAA elements, battery life is most often given when using high-quality alkaline batteries; if instead of them inexpensive saline ones are used, the operating time may be several times shorter.

In general, when choosing a flashlight according to the maximum operating time, it does not always make sense to focus on “long-playing” models: they often have either low power or impressive weight / dimensions, and the price can significantly “bite”. Flashlights with a long battery life will be useful first of all to those who have to s...tay “away from civilization” for a long time: extreme tourists, rescuers, military, etc. And for most everyday tasks in a modern city, and even for trips to nature for several days, up to 10 hours is enough.

Brightness levels

The number of brightness levels provided in the flashlight design. Most modern models have one level of brightness, but there are models with the ability to adjust. Several levels of brightness allow you to choose the best option for a particular case: for example, to view a small room, you can reduce the brightness and save battery power, while in a large warehouse you may need full power of the flashlight. Accordingly, the more brightness levels are provided in the design of the flashlight, the wider your options for choosing the best option will be.

Also note that in addition to step-by-step brightness adjustment, with fixed levels, modern flashlights can also be used with smooth adjustment. It is detailed below; here we note that the stepped format is technically simpler, cheaper, and therefore is used much more often. And in individual lamps, these options are combined — for them, the characteristics indicate both the number of individual brightness levels and the presence of smooth adjustment. The specific way to implement such a combination may be different. For example, a brightness control ring can have several fixed levels with clear values, and the ability to set any intermediate position between these values; the main mode of operation with smooth adjustment can be supplemented with a fixed level of reduced or increased brightness; etc.

Additional modes

The number and types of additional modes of operation provided for in the flashlight.

Additional modes include all modes in which the flashlight operation format differs from the standard “constant luminous flux in the visible range without pronounced coloration”. Namely strobe, SOS, beacon, flicker, light, low / high beam, infrared (IR), ultraviolet (UV), red light, blue light, green light, etc. More details about each:

- Stroboscope. Fast flashing mode - several flashes per second. One of the most popular applications of this function is disorientation of the enemy in an extreme situation; in light of this, a stroboscope is often provided in underbarrel flashlights (see "Type"), as well as manual models of "tactical" specialization. In addition, fast blinking is well suited to distinguish yourself on the road - especially in cloudy weather or at night: such a light is much more visible than constant light, including with peripheral vision. At the same time, we note that when using a stroboscope, some caution should be observed: due to the specific effect on the p...syche, this mode can provoke exacerbations of certain diseases - for example, seizures in patients with epilepsy.

— S.O.S. The mode of operation is "three short flashes - three long - three short", which corresponds to the international signal "please help" (letters SOS in Morse code format). This eliminates the need to send such a signal manually and allows you to leave the flashlight to work autonomously, and take care of more pressing problems (which often accompany situations that require the "SOS").

— Low / high beam. Possibility to switch between far directional beam and near diffused light. This switching is most often accomplished by using multiple sets of LEDs; at the same time, in some models, each of these sets is responsible for its own mode, in others, all diodes work in the high beam, and only a part of them work in the low beam.

— Infrared (IR). Illumination in the invisible infrared range. It is used, in particular, to improve the efficiency of night vision devices and IR sights. Note that many of the LEDs responsible for this mode also glow in the visible range (red light) during operation; however, this glow is quite weak and, as a rule, is noticeable to the human eye only when looking directly at its source from a short distance.

- Ultraviolet (UV). Illumination in the ultraviolet range is mainly used to identify objects and traces that are invisible under normal lighting. One of the most popular ways to use this feature is with a makeshift currency detector: most modern banknotes have markings that glow under UV light. Also, such light can be used to detect inscriptions with “invisible” ink (including marks on the same banknotes), some biological (for example, blood) and chemical liquids (in particular, UV-sensitive compounds can detect leaks in pipes and liquid contours), etc. Note that the UV emitter usually glows in the visible range - with a characteristic bluish tint; this allows you to accurately determine whether such a light is on or off.

- Red light. One of the more popular complementary colors in modern flashlights; can be used both in combination with blue and green (in the so-called RGB models), and as the only auxiliary shade. One of the features of red light is that it practically does not affect night vision, does not penetrate through the eyelids, and even after complete darkness does not blind the eyes. This makes such lighting the best option, for example, for clarifying map data during a night hike, when you need to quickly restore vision after turning off the light, or for emergency lighting in a sleeping room, where you need to see the environment and at the same time it is undesirable to disturb sleeping people with the light. . Another way to use red light is signaling: this light travels farther than blue or green, and stands out prominently against most landscapes and man-made objects. Hue change can be carried out both due to the light filter on the main light source, and due to a separate LED.

- Blue light. One of the shades used in the main three-color "RGB-lanterns" - along with red (see above) and green. This light is intended mainly for situations where you need to effectively illuminate the space in front of you, but it is undesirable to use ordinary white light. Human vision is most sensitive just to blue and green shades; therefore, a relatively weak blue light flux allows a large amount of detail to be revealed. And in some situations, such lighting can be even more effective than white. For example, if at night a white lantern is pointed at a light object, then the space behind this object will be hardly noticeable due to the bright reflected light; and a weak blue light will evenly highlight both the "foreground" and the "background". But using this shade at high brightness, on the contrary, is undesirable - reflection from bright blue light will dazzle even more than from white, and even more so red. And if a blue beam, even a weak one, hits directly into the eyes, it will instantly knock out night vision, and it will take quite a long time to restore it.
Note that the choice between blue and the similar green (see below) depends on the specific situation: different shades may be optimal in different situations.

- Green light. Hue, most commonly used in tri-color RGB lights, but sometimes used as the only complementary color. In many ways it is similar to the blue described above - in particular, in some situations, a weak green light can clearly reveal details that are invisible in other shades (even under the same blue light), but high brightness is undesirable for such a beam. In addition, this color has its own specific feature: many animals almost do not react to green light, so it is especially convenient for hunting.

- Lighthouse. The mode of infrequent flashes with a repeating amplitude, most often at a relatively low brightness (with some exceptions to the rule). In some models of lanterns, you can even meet more than one version of the lighthouse. The mode is designed to detect and observe the user at a distance; at the same time, the beacon not only consumes battery power more economically than a constant light of the same brightness, but is also better visible from afar. We also note that in headlamps, the flicker mode performs a similar function (see below).

- Flicker. In this mode, the flashlight emits short pulses or shines with a variable, "pulsating" brightness. This format of work is not intended to illuminate the surrounding area, but to make the user more visible to others: a person reacts to flickering light reflexively, even if its source is far in the peripheral vision zone. The flicker mode will be useful primarily on the roads - for example, when walking or cycling at night: in the same city, such a warning for surrounding drivers will not be out of place, and there is no need to talk about dark country roads.

— Red blinking (red blinking, red beacon). This mode allows you to make the flashlight as noticeable as possible: the red light, especially the flashing one, catches the eye even in the daytime. And in the dark, this shade is also useful due to the fact that it does not harm night vision (for more on this, see "Red Light" above). But the specific specialization of the red flashing may be different, depending on the specialization of the flashlight. For example, in tourist models (see "Type"), this mode allows you to give a signal, indicate the location of the camp, collection points, etc.; and in headbands, it is used to highlight the user on the road and make him as visible as possible to others (primarily for car drivers).

- Lamp. The function is found, as a rule, among hand lamps and in tourist models of flashlights (as an addition to the main directional light). In fact, we are talking about a scattered light mode - as opposed to a directional beam that provides the main light source with a reflector. Diffused light does not differ in range, but it allows you to cover a significant space - for example, to illuminate an entire room.

- LCU. Laser pointer mode: the flashlight emits a laser beam, the mark from which points to the intended point of impact. It makes sense to provide for such a regime only in underbarrel models (see "Type").

Note that this list is not exhaustive: modern flashlights may provide for other, more specific modes of operation. In such cases, the features of the functionality should be clarified according to the manufacturer's documentation.

In box

- Flashlight charger. A device for charging batteries directly in the flashlight. Note that models with both non-removable and removable batteries can be equipped with such a “charger”. In any case, such devices are extremely easy to use: you do not need to remove the batteries and put them in a separate device, just connect the flashlight to an outlet, auto outlet or USB port (memory devices can use different power sources, this should be specified separately). In addition, some flashlights with this function are able to work even while the battery is charging (in fact, from the mains). At the same time, chargers of this type are not as universal as "chargers" for individual batteries (see the corresponding paragraph).

- Car memory. The presence in the kit of a device for charging a flashlight from a car cigarette lighter (or a standard auto socket of the same size). Typically, such a device has the form of a simple plug with a cable; the cable can be made detachable. And in some models, a separate car charger is completely absent: to charge the battery, the flashlight itself is inserted into the cigarette lighter socket, and the body of the device plays the role of a plug. See "Power - Cigarette Lighter" for details.

- USB cable for charging. The presence in the kit is separately only a cable for charging, but without a...complete plug into an outlet. At the same time, you have the possibility to charge, for example, from Power-bank.

- Battery charger. A device for charging the batteries supplied with the flashlight. Only models with removable batteries are equipped with such a device - in fact, the battery must be removed to charge. This may create some inconvenience. On the other hand, batteries are usually made in a standard size, which gives many additional options. For example, you can buy a spare set of batteries and use it while the main one is charging, or even put disposable batteries instead of "native" batteries; The charger can be used not only for flashlight batteries, but also for other compatible batteries.

— Power element(s). A battery is included with the flashlight. This feature allows you to use the flashlight immediately after purchase, without buying additional batteries separately. Note that the presence or absence of a battery in the kit does not depend on the type of battery itself (see "Power"): for example, models for the original battery are not always equipped with such a battery. Therefore, if readiness for work “out of the box” is critical, you should choose a flashlight for which the battery is directly declared in the kit. At the same time, it does not hurt to clarify which element the product is equipped with - a disposable battery or a rechargeable battery.

- Light filters. Removable filters, commonly used to color the beam of a flashlight in one color or another - red, blue and / or green. See "Additional Modes" for more information on such colored lighting; Here we note two points. Firstly, the set of light filters can be different: for example, red light is common, but green and blue are much less common. At the same time, for some lamps, additional light filters are produced separately, they can be purchased in addition if necessary. Secondly, if a flashlight with colored light does not have filters in the kit, it means that this model uses separate colored diodes or, much less often, built-in filters. Both the one and the other option turns out to be more convenient from the point of view that to switch colors you do not need to mess around with interchangeable accessories (which you can forget somewhere or lose). On the other hand, additional equipment somewhat complicates and increases the cost of the design of the entire device.

Clip for carrying. The presence in the design of the flashlight of a special clip (clips) - similar to that used in portable players, ballpoint pens, etc. This clip allows you to fix the flashlight on clothing, for example, on the edge of a pocket. This function is intended primarily for ease of wearing: a flashlight fixed with a clip will always be in one place, without getting lost or confused in your pocket.

- Bicycle mount. Fastening for installation of a lantern on a handlebar of a bicycle. Allows you to use the lighting device as a source of head light and indicates the presence of a cyclist on the road at night. As a rule, the holder is fixed on the steering wheel by means of a screw clamp, and the flashlight is held in it due to the elasticity of the mount.

- Strap. The presence in the design of the lantern strap for mount on the hand. It protects the device from falling: even if you accidentally open your fingers, the strap will hold the flashlight on your hand (or at least delay the fall so that you have time to react). And in diving models (see "Type"), such a device can, on the contrary, keep the flashlight from floating up. In large-sized hand-held lamps, the strap may be designed for ease of carrying on the shoulder, but such options are quite rare.

Case. Existence in a set of delivery of a special cover for storage and transportation of a lamp. Such a case protects the device from excessive contamination and provides some degree of protection against damage. In addition, it can come in handy for protecting surrounding fragile items - for example, if you have to transport them along with a flashlight in a tightly packed bag or backpack.

- Underbarrel mount. Attachment for mounting an underbarrel flashlight (see "Type") on a weapon. Most often, such a mount is designed for a standard Picatinny / Weaver rail, but other options are possible; This point does not hurt to clarify before buying. In any case, this equipment is convenient because the mount does not need to be looked for separately; on the other hand, it may not be suitable for non-standard "seats".

- Without mount. The absence of a mount on a weapon in the delivery set of an underbarrel flashlight (see "Type"). Such models were originally intended for use for a different purpose - usually as hand-held compact ones (see ibid.), and the possibility of installation under the barrel is provided as an option. Also, you should pay attention to this option if the weapon has a non-standard way of installing flashlights - the mount for such an installation is easiest to buy separately from the flashlight.

Reflective elements

Additional inserts on the straps of the headlamp, made of a special reflective material. The main function of reflective elements is to make a person more visible, in particular on the road at night.

Built-in magnet

A permanent type magnet built right into the body of the flashlight.

The built-in magnet is selected so that it can hold the flashlight on a steel or other magnetic surface. At the same time, in many models, the magnet is placed at the end of the elongated body and allows you to “stick” the device to at least a horizontal surface, and often also to vertical walls. Anyway, this function allows you to at least fix the flashlight on magnetic materials, freeing your hands; this can be a great alternative to the hanging hook (see above), especially if there are no hooks nearby. And in some flashlights, a magnetic latch is also used to secure the plug from the charger; in models with such functionality, it may even be possible to mount the charger on the wall and simply hang a flashlight on it to replenish the energy supply.
Videx VLF-A055H often compared
Fenix HM50R XM-L2 U2 often compared