USA
Catalog   /   Large Appliances   /   Integrated Appliances   /   Hobs

Comparison VENTOLUX HI 32 TC FBS FZ SL black vs Teka Total IZF 32400 MSP black

Add to comparison
VENTOLUX HI 32 TC FBS FZ SL black
Teka Total IZF 32400 MSP black
VENTOLUX HI 32 TC FBS FZ SL blackTeka Total IZF 32400 MSP black
Outdated ProductCompare prices 1
TOP sellers
Product typehobhob
Burner typeelectricelectric
Designdominoesdominoes
Burners
Hob materialglass ceramics (EuroKera)glass ceramics (Schott Ceran)
Number of induction burners22
Bridge mode
Burners power1.8 kW, 1.8 kW1.75 kW, 1.75 kW
Burner diameter18 cm, 18 cm15 cm, 21.5 cm
Controlssliderslider (separate control of burners)
Number of power levels99
Features
Functions
auto switch-off
timer
 
child lock
residual heat indicator
auto switch-off
timer
pause mode
child lock
residual heat indicator
Automatic programmes
 
 
 
melting
keep warm function
languor
More specs
Input power3.6 kW
Frameis absentis absent
Dimensions (WxD)29x52 cm30x51 cm
Cut-out dimensions (WxD)265x490 mm280x490 mm
Country of originChinaTurkey
Color
Added to E-Catalogoctober 2023october 2021

Hob material

Enamel. The simplest and most common type of coating. Enamel combines low cost and good strength parameters. In addition, it can be produced in almost any colour. On the other hand, cleaning it can require considerable effort, and over time scratches and chips appear on such a surface.

Stainless steel. Steel surfaces have a nice appearance. In addition, they are stronger than enamelled ones; cracks and chips do not appear on them. Also, steel is quite easy to clean, but it is difficult to maintain its cleanliness — dirt appears easily, and even fingerprints can ruin a neat appearance. And for cleaning you need to use special tools, otherwise, you can scratch the stove.

Glass ceramics. Glass ceramics as a material is generally remarkable for its high thermal conductivity combined with good strength and heat resistance specs. Schott Ceram and EuroKera, manufacturers of this very glass ceramics, which manufacturers of household appliances install in their models, were especially successful in this. It made it possible to create original models of electric hobs, where the heating elements are located under a solid glass ceramic surface. The properties of this material allow it to be used with induction hobs(see below). Such surfaces do not have protruding part...s, and the location of the heaters is marked only by lines; thanks to this, you can conveniently move the dishes between the heaters, and cleaning such a surface is as simple as possible. However, there are also disadvantages: glass ceramics is less durable than enamel or steel. It requires dishes with a flat bottom, and spilling liquid on a flat surface is fraught with spreading over the entire stove and (not only). Also, this material is used in gas cooking surfaces "gas-on-glass". However, it is rather fashionable because, in addition to strength, it does not have key advantages over a tempered glass (see below) but costs significantly more.

Tempered glass. The material used in gas-on-glass cooking hobs. it is used to make a surface over which gas burners are located. Such models have an original appearance, and the glass itself is scratch-resistant and can be cleaned well. Its strength and resistance to heat are much lower than that of glass ceramics (in fact, the latter has become the reason that tempered glass is not used in electric hobs), but these moments are more than offset by low cost.

— Cast iron. An original variant found in some premium gas models. The working surface, in this case, is made of the same cast iron as the burner grates, and the grates themselves are protrusions on the cast iron surface. It gives the entire structure an unusual, very strict appearance. And it increases its reliability: the design of the burner grates is such that they will not bend even under the heaviest dishes. On the other hand, cleaning such a surface can be quite laborious, and this option is not cheap. Because of this, there are only a few models with cast-iron surfaces on the market.

Burners power

Nominal burners power. It refers to the power consumption of the heater. This parameter allows you to estimate how much electricity the burners will spend when operating at maximum heating intensity. At the same time, the heat transfer power of different burners can be different, and the actual heating efficiency will also greatly depend on the specs of the dishes. As a result, it hardly makes sense to evaluate the working capabilities of the hob by the power of the burners. It is quite possible to proceed from the fact that the burner will be enough for a pot of the same diameter.

Burner diameter

The heating power directly depends on the diameter of the burners. And, at the same time, the performance of the device and the speed of cooking. The larger the burner, the more heat dissipation it has. Also, the diameter of the burner allows you to determine what sizes of dishes are suitable for use on the hob. Indeed, for induction models, this value is critical for high-quality heating. Burners can have the following diameter:
  • small — about 145 mm, power within 1200 W;
  • medium — about 180 mm, power within 1700 W;
  • large — about 220 mm and more, power within 2000 watts.


Some hobs use double ring burners that allow you to adjust the diameter of the heating zone. If the diameter of the burner is 180, 200, 220 mm, then it means that the heating zone on a particular burner can be narrowed or expanded, depending on the size of the dishes used.

Controls

The type of control used in the hob. The options might be:

Rotary knobs. Control based on classic rotary knobs. Sometimes buttons are also provided in the design but they are only responsible for the additional functions of the device. It is the knobs that control the switching on and power of the burners (and the combination of knobs and youch controls is indicated separately — see below). This type of control is known for its simplicity, convenience, reliability and low cost, which make it extremely popular — it is used in most modern hobs of an independent type (see above).

Touch controls. touch controls can control almost all functions of the hob, while the set of such functions can be very extensive. Among the advantages of touch sensors, one can note a stylish appearance, ease of cleaning due to the absence of protruding parts, and the touch controls do not need to be pressed — a light touch is enough. The main disadvantage of this type of control is its high cost, but it is mainly used in high-end hobs, where the price of touch controls is almost invisible compared to the cost of the entire device.

— Rotary knobs + touch controls. Combination of rotary knobs (see above) with touch controls. Note that only rotary knobs are enough for basic control of the burners, and buttons can also be used for additional functions — they are cheaper than touch controls. Therefore, t...his type of control usually means that we have a rather expensive model with an abundance of additional functions. Among the advantages of touch controls, one can note a neat and stylish appearance, as well as ease of cleaning — they, unlike buttons, do not have slots and protruding parts where dirt can accumulate. And some models with similar controls have a rather unusual design — for example, only one rotary knob, the purpose of which is changed by commands from the touch controls.

— Touch + magnetic disk. Touch controls (see above), supplemented by a special rotary control — a magnetic disk. This disc is somewhat similar to rotary knobs, but it is called magnetic because of the fastening — with a permanent magnet, which allows you to remove the control. Most often, there is one disc for all burners; less often there are models with their disc for each burner. However, such a regulator has two key differences from rotary knobs. Firstly, the magnetic disk controls not only the power but most of the other functions of the hob. Secondly, the discs look neater and are more comfortable to use: they spin easily, and the detachable design makes them easy to clean and keeps children out of the way. However, it makes sense to use this control method mainly in high-end hobs with an abundance of functions.

On the oven. As the name implies, such hobs do not have their control — it is carried out from the oven control panel to which the device is connected. This variant, by definition, only occurs in dependent models (see "Type").

Slider. A kind of touch controls. Often they are elongated in a slender line; less often they are made in the shape of a circle. To adjust the heating intensity of the burners or quickly access other settings of the hob, slide your finger along the corresponding touch scale to the selected value. The convenience of slider control is that you can immediately set the required heating power by clicking on a certain area of the scale.

Separate. Control using sensors or sliders (see the corresponding paragraphs), which implies the ability to fine-tune the operation of the burners individually - each of them has its own power adjustment scale. Separate control allows you to set the required heating level for a specific zone without having to first select a specific burner by tapping on the panel. It is more intuitive and gives you more flexibility when preparing different dishes overnight.

Functions

Auto ignition. An ignition system for gas burners built right into the hob. Most often, auto ignition uses an electric spark, and the device needs to be connected to the mains, even if all the burners on the surface are gas. On the other hand, this function greatly simplifies ignition, eliminating the need for matches, lighters and other sources of the open flame. It is worth saying that auto-ignition systems can work in different ways: in some models, the ignition is triggered immediately when the handle that opens the gas is turned; in others, you need to press a separate button for this.

Gas control. A safety system that automatically cuts off the gas supply if the flame is accidentally doused. It consists of two main elements: thermocouples and gas blocking devices. When the flame goes out, the thermocouple sends a signal to the blocking device, which shuts off the gas supply, preventing it from leaking.

Temperature probe. A device for measuring the temperature of a dish and determining the degree of its readiness. Such measurements can be carried out both on the surface and in the depth of the product. The core temperature probes usually communicate wirelessly with the hob. Relying on the indicators measured by the temperature probe, the panel automatically regulates the heating or maintains the required water temperature. Also, the temperature pro...be will be useful when cooking dishes using the sous-vide method.

Auto switch-off. A system that allows you to automatically turn off the heating if necessary. The principle of operation of the auto switch-off can be different: in some models, it works according to a timer set by the user (see below); in others — when the burner reaches a critical temperature or if the heater has been working for a long time without user intervention. However, this function makes the usage of the hob more convenient and even safer. Note that in gas burners, auto switch-off is rarely found for technical reasons.

Timer. A device that counts a certain time (set by the user) and gives a signal at the end of the countdown. In addition, the timer can also provide an automatic heating shutdown (see above). The types of timers could be different — from the simplest mechanical knobs to electronic units with displays. The first option is cheaper, but the accuracy is low; electronic devices are more expensive but more accurate and convenient. Anyway, the presence of a timer can significantly simplify the life of the user, relieving him of the need to keep track of time on his own.

Pause mode. The ability to pause all working burners with one click of the button and then resume their work by pressing the same button. In the pause mode, the burners are turned off and heating continues only due to the residual heat. And when the pause is turned off, all previously set work settings are returned — power, timer countdown, etc. This feature can come in handy when you need to leave the kitchen for a while, and you are not sure how long the absence will last. Note that the pause mode usually has a time limit of several minutes, after which the surface is completely turned off.

Child lock. The ability to lock the control panel of the device so that turning the knobs and pressing the buttons does not affect its mode of operation (often when the lock is turned on, the knobs are generally fixed). This function is useful primarily as protection against children: a curious baby will not be able to turn on the hob or change its mode of operation at its discretion. The blocking is usually removed in such a way that an adult can do it, but not a child — for example, by pressing the buttons in a certain order.

Residual heat indicator. The indicator that shows the hotplate is still hot. Usually, it reacts to heating from 50 °C and above. The main function of such an indicator is to prevent burns from touching a burner that has not yet cooled down. It can also be used when turning on the burner — to determine whether it has heated up or not. This feature is especially relevant for solid plate burners (see above), although it can also be useful for Hi-Light burners.

Built-in hood. The presence of its built-in hood in the design of the hob. Usually, the air intake is located at the level of the burners, its size is small, and the performance is low. Accordingly, a built-in hood is unlikely to be the main ventilation system in the kitchen, but at the same time, it can be a good addition to a separately installed hood. The main disadvantages of hobs with this feature are the high cost and complexity of installation.

Hob to hood. The ability to control the kitchen hood from the hob. To do this, both devices are synchronized via one or another communication channel; the hood turns on when the burner on the hob is turned on and adjusts the power of work depending on how many burners work and at what power. It eliminates the need for the user to manually turn the hood on and off. And working parameters, usually, are selected in such a way that there is enough power even for the most difficult situations. Some models even allow you to adjust the specific performance of the hood in a given situation. However, it is worth noting that different manufacturers of kitchen appliances use different technologies for communication, differing even in the principle of operation: for example, Miele's Con@Сtivity works by radio, and Electrolux's Hob2Hood works via an infrared channel. Therefore, if you plan to use this function, you should pay special attention to the compatibility of the surface and the hood. It is recommended to choose among devices of the same manufacturer.

Control via Internet. The ability to control the hob via the Internet. The built-in Wi-Fi module is used to connect to the network. And the control method itself may be different: in some models, you need to install a proprietary application on your smartphone or tablet; in others, it is enough to open a special page in any browser. Nevertheless, this function allows you to control the hob and monitor its status anywhere in the world where the Internet connection is available. Thus, you can, for example, leave the kettle on the burner and turn on the heating in advance on the way home so that hot water is ready by the time you return. And having gone on a long trip, you can at any time check whether you forgot to turn off the hob and, if necessary, turn it off. However, such functionality significantly affects the cost.

Automatic programmes

Boil detection. A system based on a sensor that monitors the state of the product being cooked (usually by the temperature of the dishes): before the water boils, the burner operates at maximum, and after boiling, the sensor reduces the intensity of work to a certain value. The point of this adjustment is that much less heat is needed to maintain the boil than to heat it up to the boiling point; moreover, if you do not reduce the heat, the liquid can spill. Accordingly, automatic boiling allows not only to save energy but also to avoid such troubles. This function is found in electric models (see Product type).

Keep warm function. The keep warm function keeps food warm until served. It will come in handy in cases where dinner is already cooked and the guests have not yet arrived. The maximum time for keeping heat usually does not exceed 1-2 hours.

Melting. Special mode for low-temperature thawing of small portions of frozen food, melting butter or chocolate. The function allows you to carefully melt the necessary ingredients into a mass of a homogeneous structure without fear that they will burn or overheat.

Auto fry function. The pre-set automatic frying mode, which ensures that the temperature of the bottom of the dishes is maintained at the optimum temperature, preventing it from cooling down or over...heating. An auto fry programme usually provides several cooking modes for different tasks.

— Additional. Several specific auto-programmes used in individual hobs and not covered by the list above.

Input power

The input power of the hob is the maximum electric power consumed during its operation. This parameter is indicated only for models that are equipped with at least one electric hotplate. It is electric burners that are the highest consumption in terms of energy consumption. Additional functions such as auto-ignition require little energy, and a regular outlet is enough for them.

First of all, the requirements for the power mains depend on this parameter: it must be able to provide such power without overloads. It is worth noting that for household sockets the power limit is about 3 – 3.5 kW, with more power, you need to connect the hob to 230 V mains according to special rules. An alternative is to use a three-phase 400 V mains: most modern hobs with electric burners allow connection to both 230 V and 400 V mains.

Dimensions (WxD)

General dimensions of the device in width and depth. Depth, in this case, refers to the distance from the leading edge to the trailing edge (when viewed from the user's side). Note that the external dimensions of the hobs are often larger than the dimensions for embedding (see below).

Cut-out dimensions (WxD)

The size of the opening that needs to be made in the kitchen countertop for the normal embedding of the hob. By default, the width and depth are indicated — the size of the opening along the front and side sides, respectively (when viewed from the user's side). Note that the dimensions of the hob itself are usually larger than the dimensions for embedding: when installed in an opening, the upper part of the surface rests on its edges, so that the device does not fall into the countertop.