USA
Catalog   /   Photo   /   Photo Accessories   /   Battery Chargers

Comparison Nitecore SC4 vs Nitecore UM20

Add to comparison
Nitecore SC4
Nitecore UM20
Nitecore SC4Nitecore UM20
Compare prices 1
from $19.45 up to $21.28
Outdated Product
TOP sellers
Batteries charging
Charging slots4 шт2 шт
Supported types
Ni-Cd
Ni-Mh
Li-Ion
LiFePO4
IMR
 
 
Li-Ion
 
IMR
Size
AAAA
AAA
AA
C
D
10340
10440
14430
14500
16340 (CR123)
16500
17500
17650
17670
18350
18490
18500
18650
22650
25500
26500
26650
 
 
 
 
 
 
10440
 
14500
16340 (CR123)
 
17500
 
17670
18350
18490
 
18650
 
 
 
 
Specs
Operation indicatordisplaydisplay
Independent charge channels4 шт2 шт
Min. charge current300 mA500 mA
Max. charge current3000 mA1000 mA
Features
Overcharge protection
Capacity recovery
Polarity test
Fault detection
USB output charging gadgets
 /5 H, 2.1 A/
Overheat protection
Short circuit protection
General
Movable negative contact
USB charging powermicroUSB
Mains plug on cable
Dimensions (HxWxD)165x110x45 mm35x56x100 mm
Weight385 g77 g
Added to E-Catalogjanuary 2018december 2016

Charging slots

The number of separate slots for batteries provided in the design of the charger.

The more such slots, the more batteries can be charged in the device at a time; “multi-charge” models ( charges for 4 batteries or more) will be especially useful in cases where you have to intensively use a large number of batteries. On the other hand, this feature significantly affects the dimensions, weight and cost of the “charger”. However, it is not so significant, therefore there are models with 1 battery or 2 batteries less and they can be characterized as a tourist option.

Supported types

The battery technology that the charger is compatible with. Modern batteries can be manufactured using different technologies (Ni-Cd, Ni-Mh, Li-Ion, LiFePO4, IMR), each has its own characteristics and requirements for the charging procedure; therefore, for a specific battery, it is worth choosing a charger for which compatibility with the corresponding technology is directly stated.

— Ni-Cd. Nickel-cadmium batteries are one of the oldest types of rechargeable cells. Nevertheless, they are still used quite widely today — in particular, Ni-Cd batteries are considered optimal for devices with relatively high current consumption and increased reliability requirements. Such batteries are resistant to low temperatures, easy to store, reliable and safe. One of the main disadvantages of this technology is the “memory effect”: the battery capacity decreases after it is put on charge without being completely discharged. However, this point is more related to the features of charge controllers, and not to the technology itself, and the use of advanced controllers can be reduced to almost zero. But from the unambiguous shortcomings, one can mention the “non-environmental friendliness” of both the batteries themselves and their production.

— Ni-Mh. Nickel metal hydride cells were created in an...attempt to improve on the nickel cadmium cells described above. The creators managed to achieve a higher capacity (with the same battery size), in addition, Ni-Mh cells are environmentally friendly and completely devoid of the memory effect even when using the simplest charge controllers. The disadvantages of this option, compared with Ni-Cd, are relatively low resistance to frost, shorter service life and more difficult storage conditions, especially for long periods.

— Ni-Zn. A technology that is the same age as Ni-Cd and also survived to this day. Nickel-zinc cells are notable for their higher capacity than other "nickel" batteries, as well as higher voltage, which, moreover, remains at the operating level almost until the charge is exhausted. The latter is especially convenient for digital cameras — this technique is quite demanding on voltage. However, for a number of reasons, Ni-Zn technology has not gained much popularity. The main of these reasons is the short service life (about 300 – 400 charge-discharge cycles).

— Li-Ion. A type of battery, widely known primarily for portable electronics like smartphones or players, but has recently been successfully used in other types of equipment. Lithium-ion batteries combine good capacity with compactness, charge fairly quickly and are devoid of the "memory effect". Their main disadvantages are high cost, poor suitability for work at low temperatures and some probability of fire during overloads and failures.

— LiFePO4. A variety of the Li-Ion batteries described above, the so-called "lithium iron phosphate". The advantages of such cells over classical lithium-ion ones are, first of all, a stable discharge voltage (until the energy is exhausted), high peak power, long service life, resistance to low temperatures, stability and safety. In addition, due to the use of iron instead of cobalt, such batteries are also safer to manufacture and easier to dispose of. At the same time, they are noticeably inferior to lithium-ion in terms of capacity.

— IMR. This abbreviation is used for lithium-ion-manganese-oxide batteries, another variation on lithium-ion technology; the designation LiMn also occurs. Improvements introduced in this version include thermal stability (reduced risk of ignition in case of failure), durability and low self-discharge rates (the latter simplifies long-term storage). At the same time, many IMR batteries are claimed to be compatible with standard "chargers" for lithium-ion cells, but it is best to use specialized devices (in particular, due to low internal resistance and increased risk of overdischarging).

Size

The battery sizes that the charger is compatible with. In this case, the adapters supplied in the kit (see below) are not taken into account in this paragraph, we are talking only about the memory as such.

The standard dimensions describes the shape, dimensions, connector design and operating voltage of the battery; thus, it is one of the most important parameters for determining compatibility with a particular charger.

The most popular sizes for which modern “chargers” are made can be divided into 1.5-volt (marked in Latin letters AA, AAA, C, D) and 3.7-volt (have digital markings 14500, 17500, 18650, 22650, 26650, etc. .P.). More about them:

— AAAA. The smallest version of the "finger" dimensions: batteries of the same cylindrical shape as the well-known AA and AAA, but with a size of only about 8 mm and a length of about 43 mm. Similar in application to AAA, but very poorly distributed.

— AAA. Size, colloquially known as "mini finger" or "little finger batteries": cylindrical batteries with a size of 10.5 mm and a length of 44.5 mm. They are mainly used in miniature devices for which there are not enough “tablet” bat...teries, and larger elements are too bulky.

— AA. Classic "finger" batteries with a size of 14 mm and a length of 50 mm, one of the most popular modern standard sizes (if not the most popular). They are used in a wide variety of types and price categories of devices, including even external battery packs for SLR cameras.

- C. Batteries in the form of a characteristic "barrel". They are similar in height to finger-type AAs, but almost twice as thick - 50 mm and 26 mm, respectively - due to which they have a higher capacity.

- D. The largest dimensions of consumer grade 1.5V batteries, 34mm in size and 61mm in length. It is mainly used in high-power flashlights and devices with high energy consumption.

3.7-V batteries are indicated by a five-digit number. In it, the first two digits indicate the size (in millimeters), the remaining three indicate the length (in tenths of a millimeter). For example, the popular dimensions 18650 corresponds to a battery with a size of 18 mm and a length of 65.0 mm. It is worth noting here that there are 3.7-volt cells that are the same dimensions as the 1.5-volt ones described above (for example, the 14500 dimensions is similar to AA finger-type), but both types are not interchangeable due to the difference in voltage.

A separate category is 9-volt R22 batteries, also known as PP3: these are rectangular elements in which a pair of contacts is located on one of the ends.

Independent charge channels

The number of independent charging channels provided in the design of the charger.

If the voltage, charging current and other parameters in this model are regulated on all battery slots at the same time, this means that the device has only one channel. The presence of several charging channels allows you to set your own operating parameters on separate slots and, accordingly, simultaneously charge different types of batteries in one device. In this case, the channel can cover both one slot and several: for example, many models for 4 batteries have only 2 channels (one for every 2 slots).

The abundance of channels expands the capabilities of the "charger" and will be especially useful in cases where you often have to charge different types of batteries; on the other hand, it significantly affects the cost of the device.

Min. charge current

The smallest current that the device can provide in charge mode. If this parameter is specified in the specifications, this means that this model has the ability to adjust the charge current (otherwise, only the maximum current is indicated).

Charging current is one of the most important parameters for any charger: see “Maximum charge current. And the general range of current adjustment depends on this indicator: the lower the minimum value (with the same maximum) — the more extensive the possibilities for setting up the "charger" for the specific specifics of work.

Max. charge current

The highest current that the device can provide when charging the battery (or the nominal value of the charging current, if it is not adjustable).

Charging current is one of the most important parameters for any charger: it determines the speed of the process and compatibility with certain batteries. In general, the higher the current, the faster the process, the less time it takes to charge. At the same time, some batteries may have recommendations for the optimal current strength and restrictions on its maximum values. Therefore, mindlessly chasing a powerful charger is not worth it: at first it's ok to clarify how justified such power will be.

Note that in multi-channel devices (see "Independent channels"), the maximum current strength can be achieved when only part of the channels are operating. The indicators provided when all channels are operating simultaneously are indicated separately for such models (see "Charge current (all channels)").

Capacity recovery

The capacity recovery function will be useful for batteries with memory effect - this time tech whose capacity has already declined. In this mode, the charger discharges and charges the battery several times in a special way, which eliminates the memory effect and restores the battery, if not to the original, then at least to a capacity close to this value.

Fault detection

A diagnostic system capable of detecting faulty batteries, disconnecting them from power and notifying the user. The fault detection function is useful not only for checking the performance as such: a battery malfunction that is not detected in time is fraught with equipment damage, and in some cases even fires.

Short circuit protection

Short circuit protection function . Such a short circuit can occur both during charging (for example, due to a malfunction of the connected battery or a foreign object getting between the contacts), and during discharging (due to a failure already in the memory itself). In any case, a short circuit leads to a sharp increase in current strength and abnormal loads on equipment, the consequences of which can be breakdowns and fires. To avoid this, short circuit protection is used - usually in the form of a fuse that turns off the power when the current increases sharply. Note that such a fuse can be both reusable and disposable, requiring replacement after operation.
Nitecore SC4 often compared
Nitecore UM20 often compared