USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Hi-Fi Receivers

Comparison Yamaha R-N803 vs Yamaha R-N602

Add to comparison
Yamaha R-N803
Yamaha R-N602
Yamaha R-N803Yamaha R-N602
Outdated Product
from $649.99 
Outdated Product
TOP sellers
Typereceiverreceiver
Tech specs
Frequency range
20 – 20000 Hz /+/-0.5 дБ/
20 – 20000 Hz /± 0.5 дБ/
Power per channel (8Ω)100 W80 W
Power per channel (4Ω)105 W
Permissible speaker impedance (Ω)4 Ohm4 Ohm
Signal to noise ratio (RCA)100 dB100 dB
Signal to noise ratio (Phono)82 dB87 dB
Audio DAC sample rate192 kHz
Features
Audio formats supportWAV, MP3, WMA, AAC, FLAC, ALAC, AIFF, DSDMP3, WMA, AAC, WAV, FLAC, AIFF, ALAC, DSD
Streaming services
Spotify
TIDAL
Qobuz
Spotify
TIDAL
Qobuz
Adjustments
bass control
treble adjustment
balance adjustment
 
bass control
treble adjustment
balance adjustment
loudness
Multimedia
AirPlay
Wi-Fi
LAN
Bluetooth
DLNA
USB A
internet radio
AirPlay
Wi-Fi
LAN
Bluetooth
DLNA
USB A
internet radio
More features
Lossless
Uncompressed
Multi Zone
 
smartphone control
 
Lossless
Uncompressed
Multi Zone
By-pass/Direct
smartphone control
iPod/iPhone connect
Connectors
Inputs
Phono
coaxial S/P-DIF /2/
optical /2/
Phono
coaxial S/P-DIF /2/
optical /2/
RCA4 pairs4 pairs
Outputs
Pre-Amp /two pairs/
to subwoofer
trigger
 
Pre-Amp /2/
to subwoofer
 
control output (IR)
On headphones6.35 mm (Jack)6.35 mm (Jack)
General
Sleep timer
Remote control
Power consumption250 W
380 W /maximum/
Dimensions (WxDxH)435х392х151 mm435x392x151 mm
Weight11 kg9.8 kg
Color
Added to E-Catalogdecember 2017february 2016

Power per channel (8Ω)

The nominal sound power output by the audio receiver per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when both channels of the receiver work under load; when working on one channel, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest average output signal power at which the amplifier is able to operate stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, an audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the nominal (average) power — it is on it that the overall sound volume directly depends.

This indicator also determines which speakers can be connected to the device: their rated power should not be lower than that of the receiver.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for the specific values for 8 ohms, the indicator up to 50 W is considered relatively low, 50 – 100 W is average, and with more than 100 W we can talk about high power.

Power per channel (4Ω)

The nominal sound power output by the audio receiver per channel when a load with a dynamic resistance (impedance) of 4 ohms is connected to it. It is customary to specify this parameter when the receiver is operating in two-channel mode (stereo); when using only one channel, the power may be slightly higher, but this mode cannot be called standard.

Rated power is the highest average (rms) output signal power at which the receiver is able to work for a long time without failures or malfunctions. The average power is taken because the audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the rated (average) power. It determines two points — the overall volume of the sound and compatibility with one or another passive acoustics. The higher the power of the receiver, the louder the sound it can provide; at the same time, this power should not exceed the rated power of the speakers — otherwise, overloads and even damage to the equipment are possible.

According to the laws of electrodynamics, with a different load impedance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for specific power indicators at a 4-ohm load, values up to 100 W...are considered relatively small for modern receivers, more than 100 W — respectively, high.

Signal to noise ratio (Phono)

The signal-to-noise ratio when the audio receiver is connected to the Phono input. This input is for connecting turntables; see "Inputs" for more details. The value of this parameter is described in detail in the "Signal-to-noise ratio (RCA)" section.

Audio DAC sample rate

The sampling rate of the digital-to-analogue audio signal converter provided in the design of the audio receiver.

A digital-to-analogue converter (DAC) is an indispensable element of any system designed to reproduce digital sound. The DAC is an electronic module that translates sound information into pulses that are sent to the speakers. The technical features of such a conversion are such that the higher the sampling rate, the better the signal at the output of the DAC, the less it is distorted during conversion. The most popular option in receivers today is 192 kHz — it corresponds to a very high sound quality (DVD-Audio) and at the same time avoids unnecessary increase in the cost of devices.

Audio formats support

Audio file formats that the receiver is capable of working with. Among those, there may be lossy compressed (MP3, WMA, etc.), lossless compressed Lossless(FLAC, APE, etc.) and Uncompressed uncompressed formats (DSD, DXD, etc.).

In general, compression is used to reduce the volume of audio files. Lossy compression (the most common option) cuts off some of the audio frequencies (mainly those that are poorly perceived by the ear), making such files take up the least amount of space. Lossless compression preserves all original frequencies; this format is preferred by many lovers of high-quality sound, however, such files take up a lot of space, and the difference between normal compression and lossless compression becomes clearly noticeable only on high-quality equipment. Uncompressed formats, in turn, are intended primarily for professional audio work; their full reproduction requires Hi-End audio equipment, and the volumes of such materials are very large. However, these standards are quite popular among sophisticated audiophiles.

Separately, it is worth touching on the uncompressed DSD format. This standard and its direct derivatives DSF and DFF use coding using the so-called pulse density modulation. It is considered more advanced than traditional pulse-frequency modulation, and allows you to achieve more accurate sound, a higher signal-to-noise ratio...and less interference with a relatively simple element base.

Adjustments

Bass adjustment. The presence in the audio receiver of a separate bass level control, in other words, bass volume. The ratio of low and high frequencies largely determines the overall picture of the sound; the optimal options for this ratio for different cases will be different, and they depend on a number of factors — from the type of audio being played to the personal tastes of the listener. Anyway, the bass control provides an additional opportunity to fine-tune the sound of the entire system. It is often combined with a treble control (see below); in fact, this combination is the simplest version of the equalizer.

Treble adjustment. The presence in the receiver of a separate volume control for high frequencies. The meaning of this function is completely similar to the bass control described above, only it works with a different frequency band.

Balance adjustment. The presence in the audio receiver of the balance between the channels. This setting is used in stereo sound: by changing the position of the knob, you can increase the volume for one channel and decrease it for another. Due to this, the conditional centre of the perceived sound shifts towards the speaker that sounds louder. This feature can be very useful for correcting the sound stage — for example, if the speakers have different sensitivity, badly placed, or the signal itself is n...ot properly balanced. At the same time, the balance controller introduces additional elements into the design, which increases the likelihood of interference. And therefore, in top-class models, it may not be provided at all.

— Loudness. The presence of a loudness system in the audio receiver. This function is used to further adjust the tone of the sound when the sound volume is low. Its necessity is connected with the fact that the human ear perceives a quiet sound differently than a loud one; because of this, even high-quality sound at low volume will seem “blurry”, not clear enough. Loudness corrects this by boosting certain frequencies. Usually this mode is enabled by the user at will.

More features

— Lossless formats. The receiver's support for audio formats that use lossless compression. Unlike lossy compression (in the same MP3), with this compression, the sound is not cut, all its details are preserved as much as possible. Nowadays, there are several lossless formats, including FLAC and APE; the specific set of standards that the player is compatible with should be clarified separately. However, anyway, this function will be useful to those who appreciate the most complete and reliable sound.

— Formats without compression (uncompressed). Receiver support for non-compressed audio formats. Most of these standards are professional, they provide very high quality and reliability of sound, but they also take up a lot of space. Examples of uncompressed formats include DSD and DXD.

— RS-232. Also known as a COM port. Service connector to control the audio receiver, used to connect the device to a computer or specialized equipment. Such control can provide more options than using the original control panel or remote control.

— I2S support. The presence in the receiver of an input and/or output for a digital audio signal in the I2S format. This format is mainly intended for signal transmission within audio devices, but sometimes it is also used for communication between devices; the latter is implied in this case. The I2S interface does not have a standard connector; it can use ports of various types — in particular, BNC, RJ-45 (LAN) and ev...en HDMI. Anyway, the purpose of this connector is similar to the coaxial S / P-DIF (see "Inputs", "Outputs"); while the I2S standard, on the one hand, provides higher quality and noise immunity, on the other hand, it is less common and significantly affects the cost of devices.

— Multizone. Possibility of simultaneous transmission of signals from different sources to acoustic systems located in different places (zones). For example, in a large house, you can simultaneously broadcast music from the player into one room, and a radio programme into another. Another use case for Multi-Zone is entertainment centers with several rooms of different types (for example, a table tennis room, a roller skating rink and a cafe).

— Direct connection (By-pass/Direct). The ability to feed the audio signal coming to the input of the audio receiver directly to the amplification stages, bypassing all additional controls (timbre, balance, etc.). Direct connection not only minimizes distortion in the processed signal, but also ensures that the sound is as close to the original as possible, which allows demanding listeners to appreciate the skill of sound engineers. For such a connection, either a separate set of Main connectors (see "Inputs") or a conventional line interface switched to By-Pass/Direct mode by a special regulator can be used.

— Smartphone control. The ability to control the receiver from a smartphone, tablet or other gadget with a special application. In this case, the connection is usually carried out via Wi-Fi or Bluetooth, and the specific capabilities and features of such control may be different, depending on the model. However, the app is often more convenient and visual than using a control panel or even a traditional remote control; and some functions of the receiver can only be accessed via a smartphone.

Voice assistant. The ability to control the receiver using one or another voice assistant. It is worth noting that own voice assistants in this technique are not provided, and we are talking about compatibility with external devices that have this function (for example, with a smartphone or tablet). The most popular voice assistants nowadays are Google Assistant, Apple Siri and Amazon Alexa.

— Connecting an iPod/iPhone. Extended capabilities for working with portable devices from Apple — primarily the iPhone and iPod touch, often also the iPad. The specific set of such features may be different, it should be specified separately in each case. So, in some models, an “apple” gadget can be connected using a dock or a special cable and used as a signal source, controlling playback from the remote control or receiver panel and at the same time recharging the gadget. In other devices, the connection is made via Wi-Fi or Bluetooth, while the iPhone / iPod can work not only as a signal source, but also as a remote control (see "Control from a smartphone"). Other additional features may be provided, such as synchronizing the multimedia libraries of the receiver and the Apple device.

Outputs

Outputs provided in the design of the device. Note that for receivers (see "Type") the presence of outputs for passive acoustics is mandatory by definition, and the players, on the contrary, do not have such outputs. Therefore, the presence / absence of such connectors is not separately indicated.

Preamplifier output (Pre-Amp). A preamplifier is an electronic unit designed to amplify an audio signal to line level. Accordingly, outputs of this type are actually line outputs for outputting sound to an external power amplifier, active acoustics, etc. For players (see "Type"), these are the main analogue audio outputs, and in receivers, Pre-amp outputs can be used in including for connecting equipment that works in parallel with passive speakers, which provides additional features for expanding the audio system. Most often, this interface uses paired RCA connectors (“tulips”), one for each stereo sound channel; less often — balanced XLR, also paired, for more details see "Inputs".

To the subwoofer. A separate output for connecting a subwoofer — a specialized speaker designed for low frequencies. Usually uses an RCA ("tulip") interface, but there may be other options. Anyway, this output receives the signal from the crossover, which "cuts" the mids and highs, leaving the bass with which the speaker works. This simplifies the connection and eliminates the need to look for external equipm...ent for the normal operation of the subwoofer — for example, the same crossover (although an external amplifier may be needed for passive "subwoofers").

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical, is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that, despite the identity of the connectors, the coaxial digital interface is not compatible with analogue RCA; and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of throughput, it is completely similar to the coaxial interface, but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see “Inputs — XLR (balanced)”, however, these two interfaces should not be confused: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). This output is usually provided in models equipped with a video input of the same standard. For composite connectors in general, see "Inputs". Here also note that the role of composite audio outputs in this case is played by the main outputs of the receiver, to which acoustics are connected — in other words, the sound accompanying the video is output directly to the standard speakers of the audio system.

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF (see the relevant paragraph), for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. The trigger output is used to automatically turn on other audio system components connected to the receiver. When the receiver itself is turned on, a control signal is sent to this output, which “wakes up” the connected device (for example, an amplifier) and relieves you of the need to turn it on manually. Of course, to use this function, the external device must be equipped with a trigger input.

— Control output (IR). The control output allows you to use the receiver's built-in IR receiver to control other components in your audio system from the remote control, such as an amplifier in another room, out of range of the remote control. With this scheme of operation, the audio receiver actually plays the role of a remote sensor, receiving commands and transmitting them through the control output to another device. Note that the very presence of such inputs and outputs does not guarantee the compatibility of various devices, especially if they are produced by different manufacturers; Sharing details should be clarified in the official documentation.

Power consumption

The power consumed by the audio receiver during normal operation. Note that this parameter can be indicated in different ways: for example, some manufacturers measure it when the amplifier is operating at full power, while others measure it at 80% or 50% power. In addition, the power consumption of modern receivers is usually not so high as to put a serious strain on the power supply systems. Therefore, power consumption information usually plays a supporting role.
Yamaha R-N803 often compared
Yamaha R-N602 often compared