Dark mode
USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Syma X5SW vs Syma X8HG

Add to comparison
Syma X5SW
Syma X8HG
Syma X5SWSyma X8HG
Compare prices 4
from $243.99 
Outdated Product
User reviews
0
0
1
0
TOP sellers
Main
2 flight modes: beginner and experienced pilot. "Headless" mode (headless mode). Broadcasting video from the camera to a smartphone or tablet via Wi-Fi
Flight specs
Maximum flight time6 min7 min
Camera
Camera typeremovableremovable
Number of megapixels0.3 MP8 MP
HD filming (720p)1280x720 px
Full HD filming (1080p)1920x1080 px 30 fps
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
acrobatic mode
acrobatic mode
Sensors
 
gyroscope
heights
gyroscope
Control and transmitter
Controlremote control onlyremote control only
Range50 m70 m
Control frequency2.4 GHz2.4 GHz
Video transmission frequency2.4 GHz (Wi-Fi)
Information display
Remote control power source4xAA4xAA
Motor and chassis
Number of screws4 pcs4 pcs
Battery
Battery capacity0.5 Ah2 Ah
Voltage3.7 V7.4 V
Battery model1S
Batteries in the set1 pcs1 pcs
USB charging
General
Protected case
Body backlight
Materialplasticplastic
Dimensions315х315х105 mm500х500х190 mm
Weight120 g580 g
Color
Added to E-Catalogaugust 2016july 2016
Price comparison

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

HD filming (720p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in HD (720p).

HD 720p is the first high-definition video standard. Notably inferior to Full HD and 4K formats in terms of performance, it nevertheless provides pretty good detail without significant demands on the camera and processing power. Therefore, HD support is found even in relatively inexpensive copters. And in high-end models, it can be provided as an addition to more advanced standards.

In drones, HD cameras typically use the classic 1280x720 resolution; other, more specific options are practically non-existent. As for the frame rate, the higher it is, the smoother the video turns out, the less movement is blurred in the frame. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion HD.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.

Live video streaming

Possibility of online video broadcasting from the quadcopter to an external device — smartphone, laptop, control panel with display, virtual reality glasses, etc.

This feature provides several benefits at once. Firstly, it greatly simplifies the control of the device, even if it is within sight; and if the copter is not visible from the ground (which happens often, especially when using heavy professional equipment), then it is very difficult to do without "eyes on board". Secondly, live broadcasting makes it possible to use a drone for real-time observations, as well as full-fledged aerial photo and video shooting; recording of footage can be carried out both on an external device that receives the broadcast, and on the aircraft’s own carrier (usually a memory card — see below).

The specific features of the live broadcast for each model should be clarified separately; however, nowadays, thanks to the development of technology, such an opportunity is available even in low-cost devices.

Sensors

Additional sensors provided in the design of the quadcopter.

— Heights. A sensor that determines the flight altitude of the machine. Such sensors can use the barometric or ultrasonic principle of operation. In the first case, the height is measured by the difference in atmospheric pressure between the current point and the starting point (that is, the sensor determines the height relative to the initial level); in the second, the sensor acts similarly to sonar, sending a signal to the ground and measuring the time it takes to return. Barometric sensors are not very accurate, but they work well at high altitudes — tens and hundreds of metres; ultrasonic — on the contrary, they allow you to accurately manoeuvre at low level flight, but lose effectiveness as you climb. However, in some advanced models, both options may be provided at once. Data from the height sensor can either be used by the quadcopter “independently” (for example, when hovering or automatically returning), or transmitted to the operator to the remote control or smartphone.

Optical. A sensor that allows the quadcopter to "see" the environment in certain directions. One of the simplest variants of such a sensor is a downward-facing camera that allows the device to “copy” the surface under which it flies. Due to this, the machine, for example, can navigate indoors, where the signal from GPS satellites does not reach. In...addition to such a chamber, "eyes" can also be provided from different sides of the machine. Note that optical sensors have certain limitations in their use — for example, they lose their effectiveness on dark, shiny or uniform (without noticeable details) surfaces, as well as at high speeds.

GPS module. A sensor that receives signals from navigation satellites (GPS, in some models also GLONASS) and determines the current geographical coordinates of the machine. Specific ways of using position data can be different: returning home, flying by waypoints (see below), recording a flight route, etc.

Gyroscope. A sensor that determines the direction, angle and speed of the machine's rotation along a specific axis. Modern technologies make it possible to create full-fledged three-axis gyroscopes of very compact dimensions, and it is with such modules that quadcopters are usually equipped. On the basis of gyroscopes, automatic stabilization systems usually work, returning the car to a horizontal position after a gust of wind, collision with an obstacle, etc. At the same time, such equipment affects the cost of the device, and in some cases (for example, during piloting), automatic stabilization is more of a hindrance than a useful feature. Therefore, some low-cost, as well as advanced aerobatic quadcopters, are not equipped with gyroscopes.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Video transmission frequency

The frequency of the radio channel used to transmit the video stream from the camera on board the drone to the receiving device: smartphone or tablet, control panel or pilot’s video glasses. The most common frequencies are 2.4 GHz and 5.8 GHz; video data transmission at a frequency of 1.2 GHz is less common. This parameter directly affects the quality and stability of the video signal, depending on environmental conditions, as well as accompanying interference from other devices. Thus, for receiving video from FPV drones, the most preferable frequency is 5.8 GHz, which is due to a wide selection of channels and high data transfer rates.

Battery capacity

The capacity of the battery supplied with the quadcopter.

Theoretically, a larger battery can provide a longer charge time. However, keep in mind that this time also depends on the power consumption of the copter — and it is determined by the power of the engines, dimensions and weight, as well as a number of other features. In addition, the actual battery capacity is determined not only by ampere-hours, but also by its nominal voltage. Therefore, only quadcopters with the same battery voltage and similar operating characteristics can be compared by amp-hours; and it is best to evaluate battery life by directly claimed flight time (see below).
Syma X5SW often compared
Syma X8HG often compared