USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Xiaomi MiTU Drone vs JJRC H49

Add to comparison
Xiaomi MiTU Drone
JJRC H49
Xiaomi MiTU DroneJJRC H49
Outdated ProductOutdated Product
TOP sellers
Main
Built-in infrared gun for air combat. Removable battery. 4 GB internal memory for video and photo recording.
The quadcopter camera has a special mode for improving the quality and retouching images (Beauty Mode). The quadcopter has a foldable design: folded dimensions 100x63x8.5 mm
Featuresmini dronemini drone
Flight specs
Maximum flight time
10 min /charge time — 60 min/
6 min /charge time — 45 min/
Camera
Camera typebuilt-inbuilt-in
Number of megapixels2 MP
Photo resolution1600x1200 px
HD filming (720p)1280x720 px1280x720 px
Live video streaming
 /using WI-FI up to 30 metres/
 /using WI-FI up to 20 metres/
Flight modes and sensors
Flight modes
 
acrobatic mode
return "home"
acrobatic mode
Sensors
heights
gyroscope
heights
gyroscope
Control and transmitter
Controlsmartphone onlyremote control and smartphone
Gesture control
Range50 m30 m
Control frequency2.4 GHz
Remote control power source2xAAA
Motor and chassis
Motor typecollector
Number of screws4 pcs4 pcs
Screw diameter76 mm
Foldable design
Battery
Battery capacity0.92 Ah0.25 Ah
Voltage3.7 V3.7 V
Battery model1S1S
Batteries in the set1 pcs1 pcs
USB charging
General
Built-in gun
 /infrared/
Protected case
Body backlight
MaterialABS plasticABS plastic
Dimensions91x91x38 mm125х63х28 mm
Dimensions (folded)100x63x8.5 mm
Weight88 g36 g
Color
Added to E-Catalogaugust 2018december 2017

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

Photo resolution

The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.

Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.

Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Control

The control method provided in the copter.

Modern drones are usually controlled by a remote control, a smartphone, or both. Here is a detailed description of each of these options:

— Remote control only. Management carried out exclusively from the complete remote control. The most common option, found in all varieties of drones — from the simplest entertainment models to high-end professional devices; and heavy commercial / industrial models (see "Type") are completely controlled exclusively in this way. Such popularity is explained by two points. Firstly, the functionality of the remote control can be almost anything — from a small device with a couple of levers and buttons to a multifunctional control unit with a screen for live broadcasts and displaying various specialized information. Thus, the equipment of the remote control can be optimally matched to the features of a particular copter. Secondly, you can install a powerful transmitter with a large range in the remote control (whereas the range of smartphones is very limited, and it also depends on the specific gadget model). Well, besides, the control panel is initially supplied with the drone (except that the batteries in some models need to be purchased separately).

— Smartphone only. Management carried out exclusively from a smartphone (or other similar gadget — for example, a tab...let) through a special application; communication is usually carried out via Wi-Fi. This option is good because almost any functionality can be provided in the control application; and the copter itself turns out to be convenient in transportation — in the sense that you do not need to carry a separate remote control with it. However, the range in such a control is very small — even under perfect conditions, it usually does not exceed 100 m, and in some models it does not even reach 50 m; and the actual communication range also strongly depends on the characteristics of the control gadget. In addition, the controls on the touch screen are not tactile, making blind control almost impossible. As a result, this option is very rare — in certain models of mini-drones and selfie-drones (see "In the direction"), for which the absence of a remote control and ease of carrying are important, and the described disadvantages are not critical.

— Remote control and smartphone. The ability to control the drone both from the remote control and from a smartphone. The features of both options are described in detail above; and their combination is found mainly in relatively simple devices, for which the shortcomings of control via a smartphone are not critical (although there are exceptions). At the same time, the main option for such copters is often control from an external gadget, and the remote control may not be included at all; This point does not hurt to clarify before buying. However, anyway, this control format gives the user the opportunity to choose the best option for a specific situation. For example, for recreational flights during a "sally" in nature, you can get by with a smartphone, and for aerobatic training, a remote control is better. So most modern quadcopters that can be controlled from a smartphone / tablet fall into this category.

Gesture control

The ability to control the copter with gestures.

The implementation of this function can be different. The simplest and most inexpensive option is smartphone control, when commands are given by turning and tilting the gadget. There are models where the accelerometer and gyroscope are built directly into the remote control, and you can control it with hand gestures with the remote control. Another, more expensive and original way is to recognize the position of the user's hands using the built-in camera. Such devices usually have a set of commands tied to rather specific movements. For example, by folding your fingers into a “frame”, you can turn on the burst photography mode, with a wave of your hand you can call to yourself, and the device will perceive the outstretched palm as a landing pad.

In general , gesture control provides at least additional entertainment, and in some cases can be useful from a practical point of view.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Control frequency

The frequency used to communicate between the aircraft and its control device (usually a remote control).

Some time ago, devices with analog control at a frequency of 27.145 MHz and 40 MHz could be found on sale. However, today these standards have practically fallen out of use and modern copter drones mainly use digital communications at a frequency of 2.4 GHz or 5.8 GHz(and some models support both of these ranges at once). This type of control has a number of advantages over analogue control. Firstly, it is less sensitive to interference: on an analog channel, a drone can mistake possible interference for a command and make an unexpected maneuver, while distortion of digital data is perceived precisely as distortion and does not affect the operation of the device. Secondly, the digital format provides high bandwidth, allowing you to even broadcast high-definition video directly from a drone. Thirdly, with this control, each “remote control-copter” pair is automatically allocated its own communication channel, and the system first checks whether it is being used by another pair of devices. Thanks to this, several devices can operate in close proximity without interfering with each other.

As for the features of specific frequency ranges, they are as follows:

- 2.4 GHz. The most popular standard in modern drones. This is due, on the one hand, to low cost (with all the advan...tages of digital control), and on the other hand, to expanded compatibility. The fact is that 2.4 GHz is the most common range of Wi-Fi modules in smartphones, tablets, etc.; so compatibility with this range allows you to easily supplement the drone with the ability to control it from an external gadget (however, this capability is not mandatory). One of the disadvantages of 2.4 GHz is also associated with the abundance of devices that use this frequency: in addition to Wi-Fi, these are Bluetooth modules, some other electronic devices, as well as most remote controls for radio-controlled equipment (not just copters). So this range is somewhat inferior to the 5.8-GHz range in terms of noise immunity; on the other hand, even with a busy broadcast, this moment is extremely rarely noticeable.

- 5.8 GHz. Further, after the 2.4 GHz described above, the development of digital standards. Allows for a longer communication range and is also more reliable, since there are significantly fewer extraneous signal sources at the 5.8 GHz frequency. In addition, the increase in frequency made it possible to increase bandwidth and effectively broadcast HD video from copters in the most advanced standards. However, some of the newest Wi-Fi standards also include support for this range, so drones in this category can also allow control from a smartphone (however, in such cases it is worth paying special attention to compatibility). The disadvantages of this option include the relatively high cost; however, thanks to the development and cheaper technology, support for 5.8 GHz can now be found even in relatively inexpensive copters.

- 2.4 GHz and 5.8 GHz. Support for both ranges described above - as a rule, with the ability to use any of them, at the user's choice. This provides additional convenience, reliability and versatility. For example, a model with two control methods (see “Control”) can use the 2.4 GHz band when working with a smartphone (which ensures a minimum of compatibility problems), and work with a remote control at 5.8 GHz (for maximum range and reliability). And drones controlled only from a remote control may even have a function such as automatically scanning ranges and selecting the least loaded one. At the same time, dual-band models are slightly more expensive than single-band ones, but the difference in price (especially with devices only at 5.8 GHz) is not particularly significant. So most modern copters capable of operating at a frequency of 5.8 GHz fall into this category.

When using specialized communication protocols, control signals between the copter and the remote control can be transmitted at special frequencies: 720 MHz, 915 (868) MHz.

Remote control power source

The number and type of batteries used in the quadcopter control panel.

— AA. Replaceable batteries, colloquially known as "AA batteries". They are available not only in the form of disposable batteries, but also in the form of rechargeable batteries, are produced under various brands that differ in price and quality (which provides freedom of choice), and finding such elements on the market is usually not a problem. The power and capacity of AA elements are relatively small, but in most cases they are quite enough for normal operation of the transmitter for quite a long time. Usually, modern consoles require several of these batteries; in the most high consumption this number can reach 8.

— AAA. Also known as "pinky". In fact, a smaller version of popular AA elements (see above); has the same key features, but differs in more compact dimensions and, as a result, somewhat reduced power. This option is typical for low-cost class models, with a small range of the remote control.

— 3s. This marking does not describe the size of the battery, but its operating voltage and technology. It denotes a lithium-ion or lithium-polymer battery (see "Battery type"), assembled from three cells with a standard voltage of 3.7 V each, and thereby delivering an operating voltage of 11.1 V. The advantages of such a power supply are high power and capacity, which allows you to use the remote control for a long time without recharging. At the same time, batteries of thi...s type can vary significantly in size and weight, and not every model marked 3s will be compatible with the remote control. In addition, finding a spare battery is more difficult than a set of cells of a standard size.

— Proprietary battery. Powered by an original battery that is not related to any of the options described above. Such batteries can be much more powerful than replacement cells, making them well suited even for remotes with high power consumption. Their main advantage is the difficulty with quick replacement: the design of the remote control is at best poorly suited for this, and at worst the battery is generally non-removable. Also, finding the right replacement battery can be a major hassle.
Xiaomi MiTU Drone often compared