Dark mode
USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Xiaomi Mi Power Bank Wireless Youth Edition 10000 vs Xiaomi Mi Power Bank Wireless 10000

Add to comparison
Xiaomi Mi Power Bank Wireless Youth Edition 10000
Xiaomi Mi Power Bank Wireless 10000
Xiaomi Mi Power Bank Wireless Youth Edition 10000Xiaomi Mi Power Bank Wireless 10000
Outdated ProductOutdated Product
User reviews
0
0
1
0
0
0
0
1
TOP sellers
Main
Wireless charging (10 W). Ability to charge two devices at the same time. USB-C port. Shockproof housing. Multilevel electrical protection system.
The USB-C port is only used to charge the power bank itself. It may be produced under the name Mi Power Bank Wireless Youth Edition or Mi Power Bank Wireless Essential.
Wireless charging (10 W). Support for Power Delivery, Quick Charge 3.0/2.0, AFC and FCP. Miniature aluminium case.
Battery capacity10000 mAh10000 mAh
Real capacity6300 mAh6300 mAh
Battery capacity37 W*h37 W*h
Battery typeLi-PolLi-Pol
Charging gadgets (outputs)
USB type C1
USB-A11
Max. power (per 1 port)18 W18 W
Power output (all ports)18 W
USB A
18 W
5V/2.4A, 9V/2A, 12V/1.5A
 
 
Power bank charging
Power bank charging inputs
USB type C
USB type C
Power bank charge current via USB3 А3 А
Power bank charge power18 W18 W
Full charge time4 h
Features
Wireless charger10 W10 W
Fast charge
Quick Charge 3.0
 
Pump Express
 
 
Quick Charge 3.0
Power Delivery
 
Samsung Adaptive Fast Charging
Huawei Fast Charge Protocol
Bundled cables (adapters)
USB type C
USB type C
General
Body materialplasticaluminium
Dimensions148x71x17 mm148x72x18 mm
Weight230 g303 g
Color
Added to E-Catalogfebruary 2020june 2019

USB type C

The total number of USB type C ports for charging connected gadgets. By 2023, they have become very popular. However, power banks are equipped mainly with one output port of the corresponding format. Models with 2 USB type C outputs have not yet gained such popularity.

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

USB A

A standard USB A port is characterized by the rated power supplied by the power bank when a load is connected to the first or only USB A output and the current strength. If there are several connectors of this type, the first one is considered to be capable of delivering more power.

The speed of the charging process directly depends on this indicator. Power is traditionally calculated by multiplying current by voltage; However, the standard voltage for USB power is 5 V, so current is considered to be the main indicator of power.

The charging power and, accordingly, the speed of the process depend on the current strength. Nowadays, on USB ports, a current of 2 A or 2.1 A is considered basic and quite modest, 2.4 A and 2.5 A are average, 3 A and more are noticeably above average, and certain fast charging technologies allow you to achieve values of 4 A. 4.5 A and 5 A. However, it is worth considering that to operate at high current, such an opportunity must be provided not only in the power bank, but also in the gadget being charged. So when purchasing a model, it doesn’t hurt to check whether the devices being charged suppo...rt high charge currents.

It is also worth noting two nuances associated with the presence of multiple USB charging ports. Firstly, they may differ in the current they produce. This allows you to select the optimal connector for each device: for example, to quickly charge a tablet with a capacious battery, it is desirable to have a higher current, and a device with a low charging current can be connected to a “weaker” port, so as not to create unnecessary load on the battery and controller. The second caveat is that if all USB connectors are used simultaneously, the current supplied by each of these connectors may be lower than the maximum; in other words, not all power banks allow you to simultaneously use USB ports at the maximum possible power. You can understand whether such a possibility exists by looking at the charge power (see below); if the charge power is not indicated, you should refer to detailed documentation from the manufacturer.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Fast charge

Fast charging technologies supported by the power bank. This is primarily about charging external gadgets, but the same technology can also be used when replenishing the power bank itself.

The fast charging feature, hence the name, can significantly reduce the time spent on the procedure. This is achieved through increased current and/or voltage, as well as smart process control (at each stage, the current and voltage correspond to the optimal parameters).

Fast charging is especially important for devices with high-capacity batteries that take a long time to charge normally. However, to fully use this feature, the power source and the gadget being charged must support the same charging technology; at the same time, different technologies are not compatible with each other, although occasionally there are exceptions. The most popular fast charging formats these days are QuickCharge (versions 3.0, 4.0 and 4.0+), Power Delivery (Power Delivery 3.0 and Power Delivery 3.1), Pump Express, Samsung Adaptive Fast Charging, Huawei Fast Charge Protocol, Huawei SuperCharge Protocol..., OPPO VOOC, OnePlus Dash Charge ; Here are the specific features of these, as well as some other options:

— Quick Charge (1.0, 2.0, 3.0, 4.0, 5.0). Technology created by Qualcomm and used in gadgets with Qualcomm CPUs. The later the version, the more advanced the technology: for example, Quick Charge 2.0 has 3 fixed voltage options, and version 3.0 has a smooth adjustment in the range from 3.6 to 20 V. Most often, gadgets with a newer version of Quick Charge are also compatible with older devices for charging, but for full use, an exact match in versions is desirable.
Also note that certain versions of Quick Charge have become the basis for some other technologies. However, again, the mutual compatibility of chargers/power banks and gadgets supporting these technologies needs to be clarified separately.

— Pump Express. Own development of MediaTek, used in portable devices with CPUs of this brand. Also available in several versions, with improvements and additions as it develops.

— Power delivery. Native fast charging technology for the USB type C connector. Used by many brands, found mainly in chargers (including power banks) and gadgets using this type of connector. Presented in several versions.

— Samsung Adaptive Fast Charging. Samsung's proprietary fast charging technology. It has been used without any changes since 2015, in light of which it looks quite modest compared to newer standards. Nevertheless, it is able to provide good speed, especially in the first 50% of the charge.

— Huawei FastCharge Protocol. One of Huawei's proprietary technologies. Formally similar to Quick Charge 2.0, but used with both Qualcomm and other brands of mobile processors, so compatibility is not guaranteed. In general, it is considered obsolete, gradually being replaced by more advanced standards like the SuperCharge Protocol.

— Huawei SuperCharge Protocol. Another proprietary technology from Huawei introduced in 2016; for 2021 is available in several versions. In some devices, the power of such charging exceeds 60 V — not a record, but quite an indicator.

— Oppo VOOC. OPPO technology, used both in branded smartphones and in equipment from other brands. Available in several versions; The latest (for 2021) version of SuperVOOC is for 2-cell batteries and is sometimes listed as a separate technology called Oppo SuperVOOC Flash Charge.

— OnePlus Dash Charge. A relatively old proprietary standard from OnePlus. An interesting feature is that in some gadgets, the effectiveness of Dash Charge is practically independent of the use of the screen: when the display is on, the battery charges at almost the same rate as when it is off. Technically a licensed version of OPPO's VOOC, however, these technologies are not compatible. Since 2018, Dash Charge has been phased out by Warp Charge, but this newer technology is still rare in separately sold chargers and power banks.

— PowerIQ. Technology developed by the Anker brand. The key feature of PowerIQ is that it is not a standalone standard, but a combined format of operation that combines a wide range of popular fast charging formats. In particular, version 3.0 claims the ability to work with Quick Charge, Power Delivery, Apple Fast Charging, Samsung Adaptive Fast Charging and others.

Body material

The main material used in the the body of a power bank.

In addition to traditional plastic, nowadays, external batteries are produced in cases made of more advanced and/or "prestigious" materials. Of these materials, aluminium is the most widely used; also you can find products made of steel, zinc, leather, fabric and even wood. Here are the main features of each option:

— Plastic. The most popular material for the bodies of modern power banks. Plastic, on the one hand, is inexpensive, on the other hand, it is quite durable and has a small weight, on the third hand, it makes it easy to create cases of any shape and colour, which is especially important for devices with an unusual design. In terms of strength and reliability, ordinary plastic is somewhat inferior to metals; however, in everyday use, this difference is not critical — except that scratches on such a case will appear faster. And for extreme conditions, cases can be produced from special impact-resistant plastic.

— Aluminium. Aluminium alloy housings are highly durable and lightweight; in addition, they look stylish, and the appearance is retained for a long time due to scratch resistance. The main disadvantage of aluminium is that it is more expensive than plastic.

...— Steel. Steel is notable for its high durability and reliability; according to these indicators, it surpasses even aluminium, not to mention plastic. On the other hand, this material has a significant weight, and therefore is used much less frequently.

— Leather. Solid body (plastic or metal) with additional leather cover. Such a coating does not affect the functionality and plays a purely aesthetic role: it gives the device a stylish and eye-catching appearance, allowing you to turn the power bank into a stylish accessory. However, note that in the design of such products (especially inexpensive ones), artificial leather (leatherette) is often used, which is noticeably inferior to natural leather in reliability, durability, and sometimes in appearance. Genuine leather, on the other hand, significantly affects the price — its cost can be more than half of the total price of the entire power bank.

— Fabric. A hard case (usually plastic) with a fabric outer covering. Such a coating not only gives the device a rather original appearance, but also gives some practical advantages: the fabric is pleasant to the touch and does not slip in the hand, which reduces the risk of dropping the power bank. On the other hand, various contaminants are poorly removed from such a surface, it has no fundamental advantages over plastic or metal, but it costs much more. Therefore, fabric cases are not very popular.

— Wood. Another design material used mainly for its original appearance than practical advantages. Nevertheless, wood is not inferior to plastic; and some users also consider the natural origin of this material to be an important advantage. On the other hand, wooden cases do not have noticeable advantages over plastic ones, and they cost much more.

— Zinc. Zinc alloys are similar in most properties to the aluminium alloys described above, however, for a number of reasons (in particular, due to the greater complexity in production), they are used extremely rarely.
Xiaomi Mi Power Bank Wireless Youth Edition 10000 often compared
Xiaomi Mi Power Bank Wireless 10000 often compared