USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison RAVPower RP-PB083 vs Nomi L300

Add to comparison
RAVPower RP-PB083
Nomi L300
RAVPower RP-PB083Nomi L300
Outdated ProductOutdated Product
TOP sellers
Main
Carabiner, USB-C cable and 2 microUSB cables included. Charging from the sun (85 hours to full charge). Dust, water protection, shock protection. Flashlight.
Battery capacity25000 mAh30000 mAh
Real capacity15700 mAh18900 mAh
Battery typeLi-PolLi-Pol
Charging gadgets (outputs)
USB type C1
USB-A32
Max. power (per 1 port)10.5 W
Power output (all ports)32 W
Power bank charging
Power bank charging inputs
microUSB
USB type C
microUSB
USB type C
Power bank charge current via USB
3 А /18 W/
2 А /5V/
Full charge time
8 h /in QC 3.0 mode/
Charge cycles500
Features
Fast charge
Quick Charge 3.0
 
Bundled cables (adapters)
microUSB /2 pcs/
USB type C /adapter/
microUSB
 
Features
flashlight
impact protection
solar charging /full charge time — 85 hours/
 
 
 
General
Waterproof+
Body materialplasticplastic
Dimensions178x76x25 mm151x77x41 mm
Weight540 g590 g
Color
Added to E-Catalogmarch 2019february 2019

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the development of modern...technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

USB type C

The total number of USB type C ports for charging connected gadgets. By 2023, they have become very popular. However, power banks are equipped mainly with one output port of the corresponding format. Models with 2 USB type C outputs have not yet gained such popularity.

USB-A

The total number of USB-A ports for charging connected gadgets. This type is gradually being replaced by USB type C, however, most models still use USB-A as the main output. This is also indicated by the number of corresponding ports. Classic are 2 USB-A outputs. However, there are also compact models for 1 output, and more impressive ones with 3 and 4 USB-A(even more).

Max. power (per 1 port)

The maximum power that the power bank, theoretically, is capable of delivering to one rechargeable device. Usually, this power is achieved under the condition that no other device is connected to the battery (although exceptions to this rule are possible). And if you have ports with different charging currents or support multiple fast charging technologies, this information is given for the most powerful output or technology.

For modern power banks, a power of 10 watts or less is considered quite low; among other things, it usually means that the device does not support fast charging. Nevertheless, such devices are inexpensive and often turn out to be quite sufficient for simple tasks; Therefore, there are many models with similar specs on the market. The power of 12 – 15 W is also relatively small, 18 W can be called the average level, 20 – 25 W and 30 – 50 W is already considered an advanced level and in some solutions this parameter may exceed 60 W.

In general, higher power output has a positive effect on charging speed, but in fact there are a number of nuances associated with this parameter. Firstly, not only the power bank, but also the gadget being charged should support the appropriate power — otherwise the speed of the process will be limited...by the specs of the gadget. Secondly, in order to use the full capabilities of the power bank, it may be necessary for it to be compatible with certain fast charging technologies (see "Fast Charging").

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

Power bank charge current via USB

Nominal charge current supported by the power bank when charging its own battery via microUSB, USB type C, or Lightning (see "Battery charging inputs").

This is the maximum and, in fact, the recommended power bank charge current. If the amperes supplied by the power source exceed this value, the charge current will still be limited by the built-in controller to avoid overloading. And using a charger with a lower output current, in turn, will lead to an increase in charging time.

Data on the charge current via USB (Lightning) is especially important due to the fact that modern power banks are usually not equipped with their own chargers for these inputs, and energy sources must be separate. On the other hand, if a high charging speed is not critical for you, you can ignore this parameter: any USB connector is suitable as a power source for the corresponding power bank inputs.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Charge cycles

The number of charge-discharge cycles that the battery can withstand without significant loss of performance.

During operation, batteries wear out, and because of this, their specs (primarily capacity) noticeably deteriorate. Battery life is usually measured in charge-discharge cycles. The features of counting cycles are described in detail in special sources, but here we note that not always models with the same claimed resource turn out to be equally durable in fact. The fact is that different manufacturers may understand “significant loss of performance” differently: for example, one brand can indicate a resource up to a 20% decrease in capacity, the second — up to a 60% decrease. Therefore, when choosing, it makes sense to focus not only on pure numbers, but also on other sources — test results, reviews, etc.

Also note that battery life can be noticeably reduced if the operating conditions are violated — for example, in case of overheating or excessive cold.
RAVPower RP-PB083 often compared