USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Radiators

Comparison Kermi Therm-X2 Line-V 11 405x2005 vs Kermi Therm-X2 Line-K 11 405x2005

Add to comparison
Kermi Therm-X2 Line-V 11 (405x2005)
Kermi Therm-X2 Line-K 11 (405x2005)
Kermi Therm-X2 Line-V 11 405x2005Kermi Therm-X2 Line-K 11 405x2005
Outdated ProductOutdated Product
TOP sellers
Radiator typepanelpanel
Country of originGermanyGermany
Manufacturer's warranty10 years
Technical specs
Materialsteelsteel
Panel type1111
Operating pressure10 bar
Max. pressure13 bar
Heat tranfer medium max. temperature110 °C
Mountingwallwall
Connectionbottom sideside
Pipe centre distance50 mm346 mm
Connection size3/4"1/2"
Heat output1345 W1345 W
Radiator height405 mm405 mm
Radiator width2005 mm2005 mm
Radiator depth63 mm63 mm
Weight30.23 kg30.23 kg
Added to E-Catalogapril 2019april 2019

Manufacturer's warranty

The manufacturer's warranty period for this model.

Usually, the terms of the warranty provide free rectification, replacement and/or compensation if the radiator fails during the stated period due to manufacturing defects. The greater the guarantee, the higher the quality of the product and the higher its cost (the latter, however, is usually compensated by high reliability). In modern radiators, the warranty period can be up to 10 years.

Note that the end of the warranty does not mean the product will immediately fail: with proper workmanship, the total service life exceeds the warranty significantly.

Operating pressure

Radiator operating pressure.

This term usually means the highest pressure of the heating medium that the radiator can sustain without consequences for an indefinitely long time. Higher rates are also allowed for a short time (see "Maximum pressure"). However, the standard operating pressure in the heating system should not exceed the specs of the radiator; otherwise, the product is likely to be damaged. In general, it is believed that this indicator should be at least 2 bar higher than the actual working pressure in the system — this will give an additional margin of safety in case of emergencies.

Max. pressure

The highest heating medium pressure that the radiator is capable to sustain without consequences during short-term exposure.

This figure is always greater than the operating pressure (see above). It directly shows the resistance of the product to emergencies, primarily the water hammer. Other things being equal, higher maximum pressure means greater strength and reliability — however, such radiators are more expensive.

Heat tranfer medium max. temperature

The maximum heating medium temperature allowed for a radiator is the highest temperature the product can withstand without consequences for a sufficiently long time.

The maximum temperature for heating systems (both centralized and autonomous) is +95 °С as standard. Thus, most radiators have an upper temperature limit of +110 ... 120 °C — this allows you to withstand such conditions confidently.

Connection

How to connect a radiator to a heating system. It is indicated by the location of the inlets for connecting the supply and return.

In modern radiators, both side and bottom connections are found. In the latter case, the inlet and outlet pipes can be located both on the sides (on different sides of the structure) and in the centre, side-by-side. Anyway, this feature does not affect the functionality and specs of the radiator. At the same time, it must be borne in mind that the sideward connection can involve both one-sided and dual-sided (from different sides) pipe connection; many models allow both options at once, to choose from, but this point needs to be specified separately.

Note that the available connection methods depend to some extent on the type of radiator (see above). For example, panel devices can have any type of connection, and in sectional products, the sideward method is mainly used — other options are extremely rare, mainly in models of a specific design.

Pipe centre distance

The distance between the axes of the inlet and outlet manifolds of the radiator or its separate section.

The dimensions of the product and the possibility of installing the heater in specific conditions, taking into account the peculiarities of the pipe connection, directly depend on this parameter. The parameter is indicated mainly for models of traditional design - with two horizontal pipes at the top and bottom, between which vertical channels of the heat transfer are laid. The centre distance determines at least the overall height of the product, and in radiators with sideward connection (see the corresponding paragraph), it also determines the features of the organization of this connection.

As for specific values, the most common models in our time are 250 mm, 350 mm, 450 mm, 550 mm and 850 mm. Solutions for 150 mm, 400 mm, 500 mm and 700 mm are noticeably less common.

Connection size

The diameter of the thread used to connect the radiator to the heating system. Modern radiators use standard sizes — for example, 3/4" or 1/2", less often 1" and 1 1/4". This indicator must match the dimensions of the pipes, couplings and other elements directly used for connection — otherwise, at best, you will need to install adapters, and at worst, the radiator will turn out to be unusable at all.

Usually, the larger the thread diameter, the more powerful the radiator (high power requires intensive circulation of the heating medium and an appropriate throughput at the inlet and outlet).