USA
Catalog   /   Computing   /   Components   /   PSUs

Comparison Corsair RMx Series CP-9020179-EU vs FSP GLN FSP800-80GLN

Add to comparison
Corsair RMx Series CP-9020179-EU
FSP GLN FSP800-80GLN
Corsair RMx Series CP-9020179-EUFSP GLN FSP800-80GLN
Compare prices 2
from $138.00
Outdated Product
TOP sellers
Main
Power margin in case of excess on the main line. Certificate 80+ Gold. Electronics with Japanese capacitors. Hybrid cooler with silent operation.
Power750 W800 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency92 %82 %
Cooling systemsemi-passive1 fan
Fan size135 mm120 mm
Fan bearingsliding
Certification80+ Gold80+
ATX12V version2.42.2
EPS12V version2.92
Power connectors
MB/CPU power supply24+8 (4+4) pin24+8 (4+4) pin
SATA84
MOLEX75
PCI-E 6pin1
PCI-E 8pin (6+2)4
Floppy
Cable systemmodularnon-modular
Braided wires
Cable length
MB610 mm
CPU650 mm
SATA750 mm
MOLEX750 mm
PCI-E750 mm
Max. power
+3.3V25 А
+5V25 А
+12V162.5 А
-12V0.8 А
+5Vsb3 А
+3.3V +5V150 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionUVP, OTP
Noise level20 dB
Manufacturer's warranty10 years1 year
Dimensions (HxWxD)86x150x180 mm
Weight1.93 kg
Added to E-Catalogmarch 2016august 2013

Power

The output power of the power supply, in other words, is the maximum power that it is capable of delivering to the system. For the computer to operate efficiently, the power supply must be greater than the total power consumption of the system at maximum load. The latter can be calculated by summing the power of individual components, however, in general, for office configurations , about 400 W450 W is considered sufficient, for medium gaming — about 600 W( 500 W, 550 W, 650 W, 700 W, 750 W), and for the top ones — power of 800 W and above ( 850 W, 1000 W and even more than 1 kW).

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Cooling system

1 fan. The most common option. The power of such a system is quite enough to cool the power supplies, including Above average and relatively inexpensive. On the other hand, fan operation creates noticeable noise, especially in low-cost power supplies with small diameter fans (see "Fan Diameter").

2 fans. The second fan is usually installed in powerful power supplies, for which the power of one fan is not enough. The price for such efficiency, in addition to increased cost, is an increased noise level.

— to Semi-passive cooling. A function that allows you automatically turn off the PSU cooling system in situations where the load on the power supply is low and heat dissipation is reduced. It is found only in models with active cooling. Recall that systems of this type are more efficient than passive ones, but they consume additional energy and create noise during operation. Accordingly, at a light load, when intensive cooling is not required, it is more reasonable to turn off the fans — this saves energy and reduces the noise level.

Passive(radiators). Compared to fans, heatsinks have a number of advantages: for example, they do not create noise at all and do not require their own power supply (thus reducing overall power consumption). On the other hand, they are much less efficient, as a result — the power...of power supplies with passive cooling does not exceed 600 watts. In addition, these PSUs are quite expensive.

Fan size

The diameter of the fan(s) in the power supply cooling system.

The large diameter allows to achieve good efficiency at relatively low RPMs, which in turn reduces noise and power consumption. On the other hand, large fans are more expensive than small ones and take up a lot of space, which affects the dimensions of the entire PSU. We also emphasize that a small fan is not yet a sign of a cheap power supply — quite advanced models can also have such equipment, in order to reduce dimensions.

As for specific diameters, the smallest value that can be found in modern consumer-grade PSUs is 80 mm. The most popular option is 120 mm, this size gives good efficiency and a relatively low noise level at a reasonable price and dimensions. Larger diameters are somewhat less common — 135 mm and 140 mm.

Fan bearing

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

— Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is quite low — rolling, and even more so the hydrodynamic and magnetic principle of operation, provide much less friction.

— Rolling. They are also called "ball bearings", since the "mediators" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices. Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

— Hydrodynamic. Bearings of this type are filled with a special liquid; when rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous...types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

— Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

EPS12V version

The version of the EPS12V standard that the power supply complies with. The EPS12V standard was created primarily for high consumption PCs (with a power of more than 700 W, see "Power") and entry-level servers. Such power supplies have a 24-pin plug for the motherboard and an 8-pin processor power connector (sometimes more than one, see “MB / CPU Power” for more details). They are also more reliable than ATX12V. They are compatible with most ATX standard motherboards, however, in older motherboards, there may be problems with matching connectors, so this issue should be clarified separately (however, to solve this problem, in some power supplies, parts of the plugs are made removable, which allows them to be reduced if necessary to the dimensions of the connectors on the motherboard).

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.
Corsair RMx Series often compared