Dark mode
USA
Catalog   /   Tools & Gardening   /   Power Tools   /   Drills & Screwdrivers

Comparison Makita DF333DWAE vs Bosch GSR 120-LI Professional 06019F7001

Add to comparison
Makita DF333DWAE
Bosch GSR 120-LI Professional 06019F7001
Makita DF333DWAEBosch GSR 120-LI Professional 06019F7001
Outdated Product
from $99.40 up to $105.96
Outdated Product
User reviews
0
0
0
2
0
12
0
TOP sellers
Main
DF333DWYE comes with 1.5Ah batteries, DF333DWYE4 comes with 1.5Ah, plus a set of bits, DF333DSAE / DF333DWAE comes with 2Ah, and DF333DWME comes with 4Ah
Product typedrill driverdrill driver
Designgungun
Specs
Rotation speed450/1700 rpm380/1300 rpm
Torque
30 Nm
with adjustment
20 steps
30 Nm
with adjustment
20 steps
Reducer2-speed2-speed
Number of speeds22
Reversesliderslider
Weight1.1 kg0.99 kg
Chuck
Chuck typekeylesskeyless
Chuck diameter10 mm10 mm
Wood drilling max. 21 mm20 mm
Metal drilling max. 10 mm8 mm
Features
Features
motor brake
LED light
motor brake
LED light
In box
case (bag)
charger
case (bag)
charger
Power supply
Power sourcebatterybattery
Battery in set22
Battery platformMakita CXTBosch Professional 12 V
Battery voltage12 V12 V
Battery capacity2 Ah1.5 Ah
Compatible batteriesBL1015, BL1020B, BL1040B, BL1016, BL1021B, BL1041BGBA 10.8, GBA 12
Charging time70 min65 min
Added to E-Catalogmarch 2019april 2017

Rotation speed

The speed of rotation of the working nozzle provided by the tool.

If a single number is indicated in this paragraph (for example, 1800), it can be either a standard, constant, or maximum rotation speed. This refers to the maximum speed if the tool has more than one speed (see "Number of speeds") and/or a speed controller (see "Functions"). In turn, two or three numbers through an oblique line (for example, 1100/2300/3400) are indicated only for models that have the corresponding number of individual speeds. Each of these numbers indicates the standard (and in the presence of a speed controller — the maximum) number of revolutions at one of the speeds.

Anyway, when choosing a tool by the number of revolutions, it is worth considering both its general type (see "Device") and the specifics of the intended work. Detailed recommendations on this matter are quite extensive, it makes no sense to give them in full here — it is better to turn to special sources. We note only a few general points. So, high -speed drills nowadays are considered to be drills capable of delivering more than 3000 rpm. In general, high speed contributes to productivity, but there is also a downside: increasing the speed (for the same power) reduces torque — accordingly, the efficiency of working with stubborn materials and large diameter nozzles decreases. Therefore, it makes sense to specifically look for a "high-speed" tool only if speed is of key impor...tance; it doesn’t hurt to make sure that the model you choose can provide the required efficiency and torque.

Weight

The total weight of the tool is usually the device itself, without attachments. For battery models (see "Power Source"), usually, the weight is indicated with a standard battery installed; for battery-powered models, the weight can be given both with and without batteries, but in this case this point is not particularly important.

Other things being equal, less weight simplifies work, increases accuracy of movement and allows you to use the tool for longer without tiring. However, note that high power and productivity inevitably increase the mass of the tool; and various tricks to reduce weight increase the price and can reduce reliability. In addition, in some cases, a massive design is more preferable. First of all, this applies to work with a large load — for example, drilling holes of large diameter, or making recesses with impact: a heavy tool is more stable, it is less prone to jerks and shifts due to uneven material, vibration of mechanisms, etc.

It is also worth noting that specific weight values are directly related to the type of tool (see "Device"). Screwdrivers are the lightest — in most of them this figure does not exceed 500 g. Screwdrivers and drill drivers are more "heavy": their average weight is 1.1 – 1.5 kg, although there are many lighter ( 0.6 – 1 kg) and heavier ( 1.6 – 2 kg or more ) models. And clas...sic drills and wrenches have the greatest weight: such a tool must be quite powerful, so for them 1.6 – 2 kg is an average, 2.1 – 2.5 kg is above average, and many units weigh more than 2, 5 kg.

Wood drilling max. ⌀

The largest diameter of holes that the tool can make when drilling with a conventional drill in wood.

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

It is worth noting that some types of wood can have a fairly high density, and for them the actual allowable drill diameter will be, accordingly, less than the claimed one. However, this is true mainly for exotic breeds, which are extremely rare in our area.

Metal drilling max. ⌀

The largest diameter of holes that the tool is capable of making when drilling with a conventional drill in metal.

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

Also note that the drilling diameter for metal is usually indicated based on medium hard steel and other similar materials. For metals and alloys that have a significantly higher hardness and density, the allowable drill thickness will be less; however, such situations occur infrequently, and if you wish, you can find out about the features of working with various alloys x in special sources.

Battery platform

The name of the battery platform supported by the device. A single battery platform is used to combine various power tools of the same brand into one line (screwdriver, grinder, circular saw, etc.). Devices on the same platform use interchangeable batteries and chargers. Thanks to this, for example, there is no need to select a battery for each individual model of a power tool, because one purchased as a spare battery can be used in various power tools, depending on the situation or as needed. Batteries of the same platform basically differ from each other except perhaps in capacity.

Battery capacity

The capacity of the battery that comes with the corresponding tool (see “Power source”). The most limited capacity values in modern power tools do not even reach 1 Ah ; such batteries are found mainly among electric screwdrivers(see “Device”). And in powerful professional models there are batteries with 3 - 4 Ah or even more.

In theory, the higher the capacity, the longer the tool can work on a single battery charge. However, in practice, everything is far from so simple. Firstly, ampere-hours are a fairly specific unit; its features are such that only batteries with the same voltage can be directly compared by the number of ampere-hours. If there is a difference in voltage, you need to convert the capacity into watt hours and use them for comparison. Secondly, the actual autonomy of the tool depends not only on the properties of the battery, but also on power consumption and other performance characteristics. Thus, it is possible to compare different models in terms of battery capacity only with the same supply voltage and similar capabilities.

Compatible batteries

Battery models compatible with the tool.

When choosing a tool, this information is relevant mainly for models without a battery in the kit (see "Complete battery"). For tools that come with batteries, the battery model is more of a reference—it's mostly "for the future" if a spare or replacement battery is needed. However, this data can also be useful in the selection process — for example, to assess compatibility with an existing battery on the farm, or to find detailed data on compatible batteries and determine how they meet your requirements (in particular, there are formulas that allow you to determine the time of continuous operation from a specific battery; these formulas can be found in special sources).

Charging time

The time to fully charge the battery that the tool is equipped with from a standard charger (when using other batteries or a “non-native” charger, this time may vary both in one direction and in the other).

For cordless tools in general, see "Power Source". And charging time data gives you an idea of how you'll need to organize your workflow and how long breaks you'll need to charge your batteries. The specific duration of the process will depend both on the capacity of the battery (ceteris paribus, a more capacious model takes longer to charge), and on the technologies used by the manufacturer that increase charging efficiency. However, in general, it is customary to refer to tools with a good charging speed as models where this procedure takes no more than 45 minutes.

We also note that the specific meaning of this parameter also depends on the number of batteries in the kit. Recall that there are often several of them at once (see "Complete battery"), and while one battery is working, the rest can be charged. This allows you to reduce interruptions to a minimum, and even completely do without them. But if there is only one battery, charging breaks will inevitably be required in full. This is especially true for tools with a built-in power source (in models with replaceable batteries, the situation can be corrected by purchasing additional batteries).
Makita DF333DWAE often compared
Bosch GSR 120-LI Professional 06019F7001 often compared