USA
Catalog   /   Sound & Hi-Fi   /   Microphones

Comparison AKG P120 vs Behringer C-1U

Add to comparison
AKG P120
Behringer C-1U
AKG P120Behringer C-1U
Compare prices 28Compare prices 3
TOP sellers
Microphonestudiostudio
Operating principlecondensercondenser
Specs
Microphone directivity
unidirectional
unidirectional
Directional pattern
cardioid
cardioid
Rated resistance200 Ohm
Frequency range20 – 20000 Hz40 – 20000 Hz
Sensitivity-33 dB
Sound pressure150 dB136 dB
Signal to noise ratio75 dB
Functions and connectors
Features
Roll-off
attenuator
 
 
Connection
XLR
 
 
USB
General
Power sourcephantomphantom
Materialmetalmetal
Size165х54х54 mm169x54x54 mm
Weight455 g530 g
In box
rack holder
 
rack holder
detachable cable
Color
Added to E-Catalognovember 2015may 2015

Rated resistance

Microphone AC impedance; this parameter is also called "impedance". This is one of the most important characteristics that determines compatibility with the amplifier or other device to which the microphone is connected: if the impedance is not optimal, there may be a loss in signal power. It has its own characteristics, depending on the purpose of a particular model (see above). So, for microphones used with computers, laptops, voice recorders and phones / tablets, the impedance may not be indicated at all — the characteristics of such models are selected in such a way as to ensure normal compatibility with the corresponding devices. But in professional audio equipment, special rules are used for selection; more details can be found in special sources.

Frequency range

The range of audio frequencies normally perceived and processed by a microphone.

The wider this range — the fuller the signal, the less likely that too high or low frequencies will be missed due to the imperfection of the microphone. However, in this case, it is worth considering some nuances. First of all: a wide frequency range in itself does not guarantee high sound quality — a lot also depends on the type of microphone (see above) and its frequency response, not to mention the quality of other components of the audio system. In addition, a large width is also not always really necessary. For example, for normal transmission of human speech, a range of 500 Hz — 2 kHz is considered sufficient, which is much narrower than the general range perceived by the human ear. This general range, in turn, averages from 16 Hz to 22 kHz, and also narrows with age. Do not forget about the features of the equipment to which the microphone is connected: it is hardly worth specifically looking for a model with an extensive range, if, for example, the amplifier to which it is planned to be connected severely “cuts off” the frequencies from above and/or below.

Sensitivity

Sensitivity describes the signal strength at the output of a microphone when it processes a sound of a certain volume. In this case, sensitivity means the ratio of the output voltage to the sound pressure on the membrane, expressed in decibels. The higher this number, the higher the sensitivity. Note that, as a rule, values in decibels are negative, so we can say this: the closer the number is to zero, the more sensitive the microphone. For example, a -38 dB model outperforms a -54 dB model in this parameter.

It should be borne in mind that high sensitivity in itself does not mean high sound quality - it only allows the device to “hear” a weaker sound. Conversely, low sensitivity is not an unequivocal sign of a bad microphone. The choice for this parameter depends on the specifics of the application: a sensitive device is useful for working with low sounds and in cases where it is necessary to capture the smallest nuances of what is happening, and a “weak” microphone will be convenient at high sound volume or, if necessary, filter out extraneous weak noises. There are models with sensitivity adjustment(and for models with a headphone output , headphone volume control may be provided).

Sound pressure

The maximum sound pressure perceived by the microphone, at which the harmonic oscillation coefficient does not exceed 0.5% — in other words, the highest sound volume at which no noticeable interference occurs.

The higher this indicator, the better the microphone is suitable for working with loud sound. Here it is worth considering that the decibel is a non-linear quantity; in other words, an increase in volume from 10 dB to 20 dB or from 20 to 40 dB does not mean a 2-fold increase in volume. Therefore, when assessing, it is most convenient to refer to comparative tables of noise levels. Here are some examples: a level of 100 dB roughly corresponds to a motorcycle engine or subway car noise; 110 dB — helicopter; 120 dB — the work of a demolition hammer; 130 dB, comparable to the sound of a jet aircraft taking off, is considered a pain threshold for a person. At the same time, many high-end microphones are able to work normally at a sound pressure of 140 – 150 dB — and this is a noise level that can cause physical damage to a person.

Signal to noise ratio

A parameter that describes the relationship between the useful signal level and the noise level produced by the microphone. Note that the actual signal-to-noise ratio varies depending on the sound pressure perceived by the microphone. Therefore, in the characteristics it is customary to indicate the option for a standard situation — at a sound pressure of 94 dB. This allows you to compare different models with each other.

In general, this indicator quite clearly characterizes the quality of work of a particular model, since it takes into account almost all significant extraneous noise that occurs during operation. The greater this ratio, the clearer the sound is, the less distortion it has. Values of 64 – 66 dB are considered quite decent, and high-end microphones provide performance of 72 dB and higher.

Features

Wireless connection. This feature is indicated for the so-called radio microphones — models in which the signal is transmitted wirelessly. Note that a radio microphone kit usually involves a receiver that is connected to an amplifier (or other sound processing device) in a classic wired way (see "Connection connectors"). However, the microphone itself is connected to the receiver via a radio channel.

Stereo recording. The ability to use a microphone to record sound in stereo format. This format assumes the presence of two channels, and for each of them the sound must be recorded separately; but the technical support of such a recording in different cases may vary. The most popular option is bi-directional microphones. However, in addition to this, this category includes paired sets for which the stereo recording function is directly claimed.

LPF (Roll-off). The presence of a low-pass filter in the design of the microphone (Roll-off is an alternative name for this function). This feature allows you to reduce the level of low frequencies in the signal produced by the microphone. This need may be due to two factors. Firstly, many extraneous noises are the sound of the wind, knocks on the device case, the surrounding background, etc. — are presented at low frequencies; by suppressing this range, you can significantly reduce the level of extraneous so...unds “heard” through the microphone. Secondly, the LPF is useful for working with the so-called "proximity effect". This effect consists in the fact that when approaching the sound source, many models tend to increase the volume of the bass sound, and when removed, on the contrary, they fail the “bass”. By turning on Roll-off when approaching the sound source and turning it off when moving away, this effect can be smoothed out to a certain extent. For a number of technical reasons, this function is mainly used in condenser and electret microphones (see "Type"). Note that in advanced models, the low-pass filter can be made customizable and supplemented with an auxiliary ultra-low pass filter.

Attenuator. The presence of an attenuator in the design of the microphone — a device that gradually attenuates the signal level at the output (a kind of opposite to an amplifier). This feature is useful when working with loud sound: by lowering the signal level, you can avoid overloading the system.

Sensitivity adjustment. The presence of its own sensitivity control in the design of the microphone. This function allows you to adjust the signal level without using the controls in other components of the audio system — for example, to change the volume on the fly; this is quite convenient, since the microphone is usually at hand, and settings can be changed very quickly and without much hassle.

Headphone volume adjustment. A separate knob for adjusting the volume of connected headphones (see "Headphone output"). Depending on the model, it can be placed both on the microphone itself and on the receiver for wireless connection. Anyway, this feature makes adjusting the volume more convenient: the control is at hand and the user does not need to reach for other devices or delve into the software settings.

Mute the microphone. The presence of its own switch in the design of the microphone. In some use cases, it is not uncommon for situations where the microphone has to be constantly turned on and off. For example, during a concert, the number of performers may change, and it is better to turn off unused microphones; when communicating via Skype through a computer, sometimes you have to be distracted by conversations with others that the “computer” interlocutor does not need to hear, etc. Usually, muting the microphone is possible through the settings or control panel of the device to which it is connected; however, using your own switch is usually easier and faster, especially if you have to mute / unmute the sound frequently.

Built-in memory. The presence of built-in data storage in the microphone eliminates the need to use external storage media to record sound. On-board storage is found in some models of advanced “lavaliers”, microphones for video cameras and voice recorders - i.e. in portable solutions with a view to comfortable work in the field.

Switching DN. DN in this case means “directional pattern”, however, this function may mean switching not only between options for a unidirectional microphone (see “Directional Pattern”), but also between one-, two- and omnidirectional operation format (see “Directionality”). microphone"). Therefore, specific switching features and available options should be clarified for each model separately.

Connection

Types of connectors provided in the design of the microphone.

Most often, in this paragraph we are talking about the type of connector designed to connect the microphone itself to external audio equipment. Of these interfaces, the most popular nowadays are analogue XLR(including a smaller version of mini-XLR), Jack 6.35 and mini-Jack 3.5 mm, as well as digital USB A, USB-C and Lightning. Also, individual microphones provide their own headphone jack(sometimes Microdot). Here is a more detailed description of each option:

— XLR. A characteristic round plug of a rather large size, usually with an external casing. In microphones, 3-pin XLR plugs are most common, one such plug allows you to transmit one channel of sound; other options are possible — for example, a 4- or even 5-pin connector in a model that supports stereo recording (see "Functions and Capabilities"). Anyway, the main advantage of XLR is the ability to work with a balanced connection. With this connection, most of the interference induced on the cable is extinguished "by itself", without the need for additional filters; this allows fairly long wires to be used without sacrificing sound quali...ty. In addition, the XLR connectors provide a tight connection, further improving noise immunity; and for additional security, sockets and plugs of this type are often equipped with locks. The main disadvantage of XLR is its large size; therefore, the main scope of its application remains professional models, where the mentioned advantages far outweigh the disadvantages.

— mini-XLR. A smaller version of the XLR interface described above; has the same technical features and differs only in smaller sizes. The latter makes the mini-XLR more suitable for applications where compactness is important. At the same time, such connectors do not yet have official standardization, and therefore are quite rare.

— mini-Jack 3.5 mm. One of the most popular modern audio connectors. In microphones, however, it is much less common than the same XLR — mainly in compact models, as well as entry-level and inexpensive mid-range solutions. This is due to the fact that the mini-Jack is small in size, but noticeably inferior to XLR in terms of quality and connection reliability, which is why it is poorly suited for professional tasks. It is also worth considering that in modern microphones you can find different versions of the 3.5 mm jack:
  • mini-Jack 3.5mm TS. A two-pin connector that allows you to transmit only 1 channel of sound (mono). It is found in fairly advanced microphones, and 3.5 mm jacks of this format are used in basic audio equipment of the appropriate level and specialized devices (like transmitters for lavalier microphones).
  • mini-Jack 3.5 mm TRS. Three-pin, the most common type of mini-jack connector. Technically, it can be used for balanced connection of one audio channel (see “XLR” above), but in fact it is more often used either for compatibility reasons (so that the microphone can work normally with three- and four-pin jacks on laptops, phones, etc.), or to transmit a stereo signal (in models with the appropriate functionality — see "Functions and Capabilities").
  • mini-Jack 3.5mm TRRS. Four-pin mini-jack plug. It is used mainly in models for smartphones / tablets, camcorders and other equipment — such equipment is often equipped with sockets for exactly 4 connectors, and for optimal compatibility, the same number of contacts is also provided on the microphone. Stereo audio can be transmitted through such an interface, but this capability is not necessarily supported.
Ideally, a microphone with a mini-jack should be connected to a connector that has the same number of pins — otherwise, normal operation is not guaranteed (although exceptions are possible).

— Jack (6.35 mm). Full-size Jack; has almost twice the diameter of the 3.5 mm mini-Jack described above. Poorly suitable for portable equipment, but it provides a fairly tight and reliable connection — although it is somewhat inferior to XLR in this parameter; can also be used for balanced connection (see "XLR"), but in this format it is used relatively rarely. Note that in some microphones, the 6.35 mm interface is provided not as a full-fledged plug, but as an adapter for a 3.5 mm mini-jack installed on the wire. The Jack connector can also have a different number of pins, but in this regard it is not as diverse as the mini-jack: the classic 3 pins (TRS) are the most common, and the 4 pin format (TRRS) is practically never found.

— TA4F. A specialized connector used in audio equipment, and mainly in microphones. Also, this term can mean a connector of a similar design TA3F (with 3 contacts).
The TA4F is fairly small, making it suitable for compact head and lavalier microphones. And thanks to the presence of 4 pins, you can also connect phantom power for condenser microphones through it (however, the use of TA4F is not limited to this type of microphone). Note that this connector is considered professional and is found mainly in the technique of the corresponding level.

— USB. The USB interface is mainly used in computer technology — to connect various peripheral devices. At the same time, among models for PCs and laptops (see "Intended use"), this option is much less common than the mini-Jack 3.5 mm described above, and most microphones with USB are studio ones. This is due to the fact that the signal is transmitted via USB in digital format, which is very convenient when recording to a computer for further processing and mixing (but for voice communication it is more convenient to use a regular microphone input). However, there are other types of microphones with this interface.

— Lightning. A proprietary connector used exclusively in Apple portable devices — iPhone smartphones, iPad tablets and iPod touch players. Accordingly, this connection option is found exclusively in microphones for Apple smartphones, moreover, specially designed for this technique.

microdot. Balanced jack for coaxial connection to musical instruments and other acoustic/audio equipment. The microDot connector is characterized by the presence of a thread, which ensures a high reliability of the connection. The microDot connection is commonly found in compact microphones mounted on a musical instrument.

— Corporate outlet. This category includes all interfaces not related to those described above. These can be not only their own connectors used by a certain company, but also some standard connection types that are not widely used and are found in specialized technology. However, anyway, when buying such a microphone, you should separately make sure that it is compatible with the device with which you plan to use it.

— Headphone output. Separate headphone output. Most often it looks like a standard mini-Jack 3.5 mm jack — it is this interface that is used in most modern "ears", which gives the user a wide choice. In addition, such an output can be combined with its own volume control.

The remaining features of both the connector itself and its application depend mainly on the type of microphone (see "Microphone"). So, lavalier models, when headphones are connected, turn into headsets; when used in karaoke, headphones make it possible to listen to music better, and when used in a studio, they also allow you to hear your own voice, controlling what is being recorded. Also note that in radio systems (see above), such an output is usually located on the receiver.

In box

- Receiver. Receiver used on wireless models (see Features/Capabilities). The receiver, in essence, plays the role of a radio adapter: it connects to an amplifier or other audio equipment in the classic wired way and transmits the signal from the microphone to this equipment. For more information about the included receiver, see “Radio System”,

— Transmitter. A transmitter used in systems with a wireless connection (see “Functions/capabilities”), or more precisely, a transmitter designed as a separate device. Miniature microphones (primarily lavalier and headset) have this design, in which the housing dimensions do not allow the transmitter to be built directly into the device: the microphone is connected to an external transmitter using a wire, the latter is usually hung on the belt. The presence of a separate transmitter is usually a sign of a compact microphone; and one of the practical advantages of this design is that the microphone can be detached and connected to other equipment (not necessarily a transmitter).

Monitor mount. A device for attaching a microphone to a computer monitor. For obvious reasons, it is used only in models for computers (see “Purpose”). This feature is especially useful in cases where there is very little free space on the table where the computer is located, or the microphone cannot be placed on the table in the optimal place. The mount can also be useful for working with a laptop, alt...hough specialized microphones are usually more convenient.

Holder for stand. A mount in the form of a characteristic round cradle designed to place a microphone on a stand, tripod or other device. Used primarily with vocal and instrumental models (see “Purpose”), it allows you to quickly remove and install the microphone on a stand - which is useful, in particular, during concerts and other public performances. Holders are also sold separately, but buying a model with a complete mount is often more convenient - such a mount is optimally compatible with the microphone and does not require wasting time searching and selecting.

— Anti-shock suspension (“ spider ”). Special shock-absorbing suspension used with studio microphones (see “Purpose”); The slang name "spider" comes from its characteristic shape. The need to use such a suspension is due to the fact that on a regular stand, a microphone can experience various shocks and vibrations (from the operation of equipment nearby, from objects falling on the floor, and even from people’s steps), which create interference in the sound. “Spider” compensates for such shocks and reduces interference to almost zero; At the same time, a complete suspension is more convenient than one purchased separately due to the fact that it is, by definition, compatible with a microphone.

Pop filter. Such a filter is a plate, usually round, installed in front of the microphone when working with voice - most often during recording; Accordingly, this function is used primarily with studio microphones (see “Purpose”). The protective screen allows sound to pass through well, but it blocks the flow of air that occurs during breathing - thus preventing the appearance of characteristic interference from “exhaling into the microphone.” Another purpose of pop filters is to protect against small splashes of saliva, which can cause corrosion and negatively affect the longevity of the microphone.

Wind protection. The windscreen most often takes the form of a distinctive “tip,” usually foam, that fits over the microphone; at the same time, in miniature models (for example, head ones, see “Purpose”) the design may be different. However, in any case, the purpose of such devices corresponds to the name: to protect the microphone from exposure to intense air currents that can cause interference. Note that the matter is not limited to wind - a person’s breathing can also become a source of interference if the microphone is located close to the mouth.

Detachable cable. The ability to detach the cable from the microphone not only makes storage and transportation easier, but also allows you to replace the supplied cable with another if circumstances require it (for example, to connect through a different interface, see above).

- Tripod. A tripod is essentially a portable tripod designed to mount a microphone on a table or other similar surface. This eliminates the need to hold the device in your hand or organize a stand “from scrap materials.” Such tripods are also sold separately, but it is usually more convenient to buy a set; For more details, see "Rack Holder".

- Power adapter. A device that allows you to supply a microphone of a condenser or electret type (see above) with the phantom power required for operation from a regular household 230 V outlet. Thanks to this, it becomes possible to connect the microphone even to tech amplifiers (receivers, players, etc.) that do not have phantom power inputs.

Case/case. A case is usually called a container made of hard materials, while a cover is usually made of soft materials. The only key difference between them is the degree of protection - the cases are more shock-resistant. But the basic purpose is the same: storing and transporting a microphone in a case/cover is much more convenient than without such a device (in particular, because additional included accessories can usually also be placed inside).

Charging case. A case is a case made of hard material that simultaneously plays the role of a charger. This feature is very popular in wireless models. The charging case usually has its own battery and the microphone (transmitter) and receiver are charged from this battery; This design provides additional convenience in several ways. Firstly, the case, in fact, also serves as a power bank - an autonomous power source; The capacity of such a “power bank” may vary, but it is usually enough for several full charges. Secondly, the ability to charge small microphones directly in the case reduces the risk of losing them. Thirdly, the charging procedure itself is quite convenient - you just need to connect the cable to the case.

Note that, in addition to the above, manufacturers may include other accessories in the kit - for example, separate clips for attaching lavalier microphones, battery chargers, cleaning wipes, etc.
AKG P120 often compared
Behringer C-1U often compared