Dark mode
USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison HP Pavilion 15-cw1000 [15-CW1043NL 6NC82EA] vs Acer Aspire 3 A315-42G [A315-42G-R5FR]

Add to comparison
HP Pavilion 15-cw1000 (15-CW1043NL 6NC82EA)
Acer Aspire 3 A315-42G (A315-42G-R5FR)
HP Pavilion 15-cw1000 [15-CW1043NL 6NC82EA]Acer Aspire 3 A315-42G [A315-42G-R5FR]
Outdated ProductOutdated Product
User reviews
0
0
1
0
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSTN+film
Surface treatmentanti-glareanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness220 nt
Colour gamut (NTSC)45 %
CPU
SeriesRyzen 5Ryzen 5
Model3500U3500U
Code namePicasso (Zen+)Picasso (Zen+)
Processor cores44
Total threads88
CPU speed2.1 GHz2.1 GHz
TurboBoost / TurboCore frequency3.7 GHz3.7 GHz
3DMark066857 score(s)6857 score(s)
Passmark CPU Mark7990 score(s)7941 score(s)
SuperPI 1M12 с12 с
RAM
RAM8 GB8 GB
Max. RAM16 GB16 GB
RAM typeDDR4DDR4
RAM speed2400 MHz2400 MHz
Slots22
Graphics card
Graphics card typeintegrateddedicated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelVega 8Radeon 540X
Video memory2 GB
Memory typeGDDR5
3DMark0611098 points
3DMark Vantage P10294 points
Storage
Drive typeSSD M.2 NVMeSSD M.2
Drive capacity256 GB256 GB
Additional 2.5" slot
Connections
Connection ports
HDMI
HDMI
Card reader
USB 2.02
USB 3.2 gen121 pc
USB C 3.2 gen11 pc
Alternate Mode
LAN (RJ-45)1 Gbps1 Gbps
Multimedia
Webcam1280x720 (HD)640x480 (VGA)
Camera shutter
Speakers22
Brand acousticsBang & Olufsen
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
Backlightwhiteis absent
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity41 W*h37 W*h
Operating time8.75 h5 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OSWindows 10 HomeLinux
Materialaluminium / plasticmatte plastic
Dimensions (WxDxT)362x246x18 mm363x248x20 mm
Weight1.85 kg1.9 kg
Color
Added to E-Catalogmarch 2020october 2019

Screen type

The technology by which the matrix of the laptop is made.

Matrices of the TN+film, IPS and *VA types are most widely used nowadays; less common are screens like OLED, AMOLED, QLED, miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:

— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.

— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.

— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.

— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).

— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).

— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.

— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.

— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.

— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.

— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

Graphics card type

Integrated(built-in). Video cards that do not have their own memory and use the general system RAM during operation. In modern laptops, such video cards are usually part of the processor. Their main advantages are low cost and power consumption, as well as low heat generation. However, the performance of integrated graphics is noticeably lower than that of discrete graphics, and besides, at high loads it “eats” a significant part of the RAM, which negatively affects the overall system performance. Integrated graphics will be perfect for lighter tasks like document work, web surfing, and light gaming, but for more serious applications, more advanced solutions are worth choosing (see below).

Discrete. Graphics card as a separate module with its own processor and specialized memory dedicated exclusively to video processing. Such graphics are more expensive than integrated ones, but they significantly outperform them in terms of performance. In addition, even at high loads, it does not take up the total RAM, and some laptops are even able to allocate part of the video memory in addition to RAM if the graphics card is idle. So if you want to play modern games at least at medium settings, or plan to use a laptop for "heavy" graphic tasks like video editing or 3D design, you should definitely choose a model with discrete graphics (or one of its advanced options — Dual Graphics or SLI/Crossfire, see bel...ow).
It is worth noting that most models with such video cards also have a built-in graphics core in the processor. So discrete graphics in modern laptops most often work in hybrid mode: an integrated module is used for simple tasks, and when the load increases, the system switches to discrete graphics.

— Dual Graphics. AMD proprietary technology used in systems equipped with Fusion integrated graphics processors and discrete Radeon graphics cards (originally stated to be compatible with the Radeon 6000 series). The difference between this mode and discrete graphics with automatic switching (see above) is that both video adapters are used not in turn, but simultaneously. Thus, their capacities are combined, which provides a significant increase in video performance. At the same time, Dual Graphics provides ample features for choosing a combination of processors and video cards, because. allows you to combine video cores with different operating frequencies without sacrificing a faster one. The main disadvantage of this technology is the inability to work with Direct X below version 10.

SLI/CrossFire. Initially, SLI and CrossFire are proprietary technologies used by nVidia and AMD, respectively, to combine the power of several discrete graphics cards. This allows for very high graphics performance. On the other hand, installing several video adapters (even compact ones) in a laptop is associated with serious difficulties: such equipment significantly increases the dimensions of the case and significantly increases power consumption, not to mention the cost. As a result, there are very few laptops with SLI / Crossfire nowadays, and they all belong to the top gaming solutions.

Graphics card model

GeForce graphics cards from NVIDIA: RTX represented by RTX 2060, RTX 2060 Max-Q, RTX 2070, RTX 2070 Max-Q, RTX 2070 Super, RTX 2070 Super Max-Q, RTX 2080, RTX 2080 Max-Q, RTX 2080 Super, RTX 2080 Super Max-Q, RTX 3050, RTX 3050 Ti, RTX 3060, RTX 3060 Max-Q, RTX 3070, RTX 3070 Max-Q, RTX 3070 Ti, RTX 3080, RTX 3080 Ti, RTX 4050, RTX 4060, R TX 4070, RTX 4080, RTX 4090 ; MX1xx represented by MX110, MX130 and MX150, MX2xx(MX230 and MX250), MX3xx(MX330 and MX350), MX450, GTX which represent GTX 1050, GTX 1060, GTX 1060 Max-Q, GTX 1070, GTX 1070 Max-Q, GTX 1080, GTX 1080 Max-Q, GTX 1650, GTX 1650 Max-Q, GTX 1650 Ti, GTX 1660 Ti, GTX 1660 Ti Max-Q and. AMD also offers video cards Radeon 520, Radeon 530(535), Radeon 540X, Radeon 610(625, 630), Radeon RX 550 (550X, 560), Radeon RX 640, Radeon RX 5500M, Radeon RX 6800M and Radeon Pro.

Note that all the above models are discrete. Actually, for a configuration with discrete graphics, it is the model of a separate video adapter that is indicated; if it is supplemented by an integrated module, the name of this module can be clarified by the official characteristics of the processor.

It is also worth mentioning that this paragraph does not give the full name of the model, but only its name within the series (the series itself is given separately - see above). However, knowing the series and model, one can easily find detailed information about the graphics card.

Video memory

The amount of native video memory installed in the laptop's graphics card. Only discrete video adapters and their advanced varieties like SLI or Dual Graphics have such memory (see "Video card type").

The more memory, the more powerful the graphics card and the better it can handle complex graphics. Of course, the specific capabilities of the adapter depend on a number of other parameters (primarily the characteristics of the graphics processor); however, the difference in the amount of memory, as a rule, is quite consistent with the difference in the overall level. In terms of specific numbers, solutions with 2 GB are entry-level, 4 GB and 6 GB are intermediate, and 8 GB - to advanced, and 12 GB and 16 GB can be found in top-end gaming laptops and high-end workstations.

Memory type

The type of dedicated graphics memory used by the discrete graphics card (see "Video Card Type").

— GDDR3. The third generation of memory based on double data transfer technology. Compared to the previous standard, GDDR 2 is capable of operating at higher frequencies and less heat. However, it is gradually being replaced by more advanced standards, in particular GDDR5.

— GDDR5. Fifth generation graphics memory with double data transfer; in this generation, for the first time, the DDR3 RAM standard was taken as the basis. It is considered quite advanced, typical mainly for high-performance video cards.

— GDDR5X. A modification of the GDDR5 described above, introduced in early 2016. Compared to the original, it provided a 2-fold increase in maximum throughput, which accordingly affected the overall performance. However such video cards are not cheap, which is why they are used mainly in premium gaming laptops.

— GDDR6. Further, after GDDR5X, the development of GDDR-type graphic memory, introduced in 2017. Provides twice the speed of the original GDDR5, with slightly less power consumption; GDDR6 capabilities are enough, in particular, for use in virtual reality systems and work with resolutions above 4K. The use of such memory is typical for the most advanced video cards installed mainly in powerful gaming laptops.

— HBM2. The second generation of HBM type memory. Unlike the GDDR described above, HBM is not a modificat...ion of the usual "RAM" of the DDR type, but a separate type of memory, developed including for video cards. Due to the design features, such memory provides high bandwidth at a low clock frequency; the latter has a positive effect on power consumption and heat dissipation, and in terms of performance, HBM2 outperforms even the most advanced versions of GDDR. The disadvantage of this option is traditional — high price; because of it, video cards with this type of memory are installed mainly in premium laptops.

3DMark06

The result shown by the laptop's graphics card in 3DMark06.

This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.
HP Pavilion 15-cw1000 often compared
Acer Aspire 3 A315-42G often compared