Colour gamut (NTSC)
The colour gamut of the laptop matrix according to the NTSC colour model.
Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.
Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of
72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.
Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h
...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.Passmark CPU Mark
The result shown by the laptop processor in the Passmark CPU Mark test.
Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
Max. RAM
The maximum amount of RAM that can be installed on a laptop. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the laptop is bought with the expectation of
and the amount of actually installed memory in it is noticeably less than the maximum available. So laptops can be upgraded in RAM to 16 GB,
24 GB a>,
32 GB, 48 GB,
64 GB and even more -
128 GB.
RAM type
Laptops mainly use different variants of DDR (so-called double data transfer memory). Here is a list of common types of such memory:
— DDR3. Third generation DDR RAM. Outperforms outdated DDR2 in terms of speed and power efficiency. However, it is also outdated against the background of the fourth version and new items - DDR5.
— DDR3L. A modification of DDR3 memory that supports operation at a reduced voltage - 1.35 V instead of 1.5 V (Low Voltage - hence the index L). Lower voltage contributes to both lower power consumption and better performance. Note that conventional DDR3 memory cannot be installed in such a slot, while the reverse option is quite possible.
—
DDR4. A memory standard released in 2014. Introduced further improvements in speed (up to 25.6 GB / s in the future) and energy efficiency. The most popular among laptops of recent years of release.
—
DDR5. The procession of the fifth generation of the DDR standard began at the turn of 2020-2021. It provides for approximately a twofold increase in memory subsystem performance and increased bandwidth compared to DDR4. Instead of a single 64-bit data channel, DDR5 uses a pair of independent 32-bit channels that work with 16-byte packets and allow 64 bytes of information to be delivered per clock on each channel. New memory modules require a voltage of 1.1 V, and the maximum volume of one DDR5 bar can rea
...ch an impressive 128 GB.
It is worth noting that different types of RAM are not interchangeable.
Some laptops have LPDDR4, LPDDR4X, LPDDR5, LPDDR5X RAM. It was developed by a specialist for mobile devices and is non-expandable, since the corresponding memory modules are built directly into the motherboard. The use of "RAM" standards LPDDR is determined by the achievement of an optimal balance between the performance of the laptop, its size and battery life.RAM speed
The clock speed of the RAM installed in the laptop.
The higher the frequency (with the same type and amount of memory) — the higher the performance of RAM in general and the faster the laptop will cope with resource-intensive tasks. However modules with the same frequency may differ somewhat in actual performance due to differences in other characteristics; but this difference becomes significant only in very specific cases, for the average user it is not critical. As for specific values, the most popular modules on the modern market are
2400 MHz,
2666 MHz,
2933 MHz and
3200 MHz. Memory at
2133 MHz or less is found mainly in outdated and low-cost devices, and in high-performance configurations this parameter is
2933 MHz,
3200 MHz,
4266 MHz,
4800 MHz,
5200 MHz,
5500 MHz,
5600 MHz and
more.
Slots
The total number of slots for RAM modules provided in the laptop; in fact — the maximum number of slats that can be installed simultaneously in this model.
Features for upgrading RAM directly depend on this indicator. So, in low-cost models, there is often only
1 slot, and the only upgrade option is to replace the "native" bar. In more advanced devices,
two or even
four slots may be provided, while some of them may be free in the initial configuration.
A special case is embedded RAM; it is more compact and cheaper than removable modules, but does not imply replacement at all. At the same time, in some laptops, the “RAM” is
only built-in, in others it can be supplemented with
one or even two slots for interchangeable strips.
Drive capacity
The capacity of the drive installed in the laptop. If there are several separate drives (for example, HDD + SSD, see "Drive type") — this item indicates the volume of the most capacious drive (in our example — HDD).
A larger drive allows you to store more data, but it also comes at a higher cost. At the same time, it is worth remembering that the price also depends on the type of media: for example, SSDs are much more expensive than hard drives of the same volume. So it is best to directly compare drives of the same type with each other. As for specific volumes, the most modest figures are typical for configurations with pure solid-state memory — SSD of one type or another or eMMC (see "Drive type"): among them you can find solutions for
240 – 360 GB and even
128 GB or less . Hard drive capacity actually starts at
480 – 512 GB ;
1TB storage capacity is average, and the most capacious modern laptops are equipped with storage
of 2TB or even
more.
M.2 drive interface
The connection interface used by the M.2 SSD installed in the laptop (see "Drive type").
One of the features of the M.2 connector and drives for it is that they can use two different connection interfaces: PCI-E (in one form or another) or SATA. We emphasize that this paragraph indicates the data of the SSD module; the connector itself may provide other interface options, including more advanced ones — see "M.2 connector interface" (for example, a drive with a PCI-E 3.0 2x connection can be placed in a connector that also supports the faster PCI-E 4.0 4x). However, anyway, the connection connector usually allows you to realize all the features of the installed drive; so this item allows you to quite reliably evaluate the capabilities of the standard M.2 module.
As for specific interfaces, nowadays you can mainly find the following options:
— SATA 3. The SATA interface was originally designed for traditional hard drives. The third version of this interface is the latest; it provides data transfer rates up to 600 Mbps. This is significantly less than PCI-E, and in general, very little by the standards of SSD drives. Therefore, M.2 connection using SATA is typical mainly for low-cost entry-level modules. However, even these media are generally faster than most HDDs.
— PCI-E. Universal interface for connecting internal peripherals. Provides generally faster speeds than SATA, making it better suited for SSD modules: theoretically, PC
...I-E allows you to realize the full potential of SSDs, even the fastest. In fact, the supported data transfer rate may be different — depending on the version of the interface and the number of lines (data transmission channels). Here are the options most relevant for modern laptops:
- PCI-E 3.0 2x. Connection using 2 lanes PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
- PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
- PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the throughput, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 MB / s.
Note that in the case of M.2 connectors, different PCI-E variations are usually quite compatible with each other — except that the connection speed when working with a "non-native" connector will be limited by the capabilities of the slowest component. For example, when connecting a PCI-E 3.0 4x SSD module to a PCI-E 3.0 2x slot, this speed will correspond to the capabilities of the connector, and when connected to PCI-E 4.0 4x, to the capabilities of the drive.M.2 drive size
The size of the M.2 SSD module (see "Drive Type") installed in the laptop. Specified in the format "width x length".
This parameter primarily allows you to evaluate the amount of space allocated for the drive, and the possibility of replacing it with a module of a different size. It is worth noting here that the M.2 standard itself allows several options for length and width, but boards with a width of 22 mm are most widely used. The length of such a board usually corresponds to one of the standard options: 30 mm, 42 mm, 60 mm, 80 mm and 110 mm.
In general, the installation of a shorter module of the same width (for example, 22x42 mm instead of 22x60 mm) does not cause problems, but the possibility of using larger components should be clarified separately — not every case allows the installation of M.2 drives with a larger one than the standard module , length. As for specific dimensions, the most common in modern laptops is M.2 22x80 mm SSDs: this size is guaranteed to allow you to change the “native” drive to almost any 22 mm standard module (except for the largest, 22x110 mm — and even for them there can be a place ). There are also smaller sizes — 22x60 mm, 22x42 mm and even 22x30 mm — but much less frequently. And here it is worth saying that the shorter the length of the SSD module, the smaller its capacity, usually.
Note that modern laptops also use M.2 modules of a different width — usually 16 mm with a length of 20 mm (16x20 mm). H...owever, this is a very rare option.