USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Apple MacBook Air 13 2018 [MREF2] vs Apple MacBook Pro 13 2017 [MPXU2]

Add to comparison
Apple MacBook Air 13 (2018) (MREF2)
Apple MacBook Pro 13 (2017) (MPXU2)
Apple MacBook Air 13 2018 [MREF2]Apple MacBook Pro 13 2017 [MPXU2]
Outdated ProductCompare prices 1
TOP sellers
Main
Slim aluminium body and bezel-less screen. Retina display. Thunderbolt support. Fingerprint scanner.
Typeultrabookultrabook
Screen
Screen size13.3 "13.3 "
Screen typeIPSIPS
Surface treatmentglossgloss
Screen resolution
2560x1600 (16:10) /Retina Display/
2560x1600 (16:10) /Retina Display/
Refresh rate60 Hz60 Hz
Brightness320 nt510 nt
Contrast1100 :11140 :1
Colour gamut (sRGB)96 %
Colour gamut (Adobe RGB)62 %
Light sensor
CPU
SeriesCore i5Core i5
Model8210Y7360U
Processor cores22
Total threads44
CPU speed1.6 GHz2.3 GHz
TurboBoost / TurboCore frequency3.6 GHz3.6 GHz
3DMark063544 score(s)
Passmark CPU Mark4057 score(s)6080 score(s)
SuperPI 1M10 с
RAM
RAM8 GB8 GB
RAM type
DDR3 /LPDDR3/
DDR3 /LPDDR3/
RAM speed2133 MHz2133 MHz
Slotsbuilt-inbuilt-in
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesIntel HD GraphicsIntel Iris Graphics
Graphics card modelUHD Graphics 617Iris Plus Graphics 640
3DMark068662 points14117 points
Storage
Drive typeSSD
SSD /PCIe-embedded/
Drive capacity
256 GB /PCI-E/
256 GB
Connections
Card reader
USB C 3.2 gen222
Thunderbolt interfacex2 v3x2 v3
Alternate Mode
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
Multimedia
Webcam
1280x720 (HD) /FaceTime/
1280x720 (HD) /FaceTime/
Camera shutter
Speakers22
Security
fingerprint scanner
 
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input device
touchpad /Force Touch/
touchpad /Force Touch/
Battery
Battery capacity50 W*h55 W*h
Operating time12 h10 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OS
MacOS /Mojave/
MacOS /Sierra/
Materialaluminiumaluminium
Dimensions (WxDxT)304.1x212.4x15.6 mm304.1x212.4x14.9 mm
Weight1.25 kg1.37 kg
Color
Added to E-Catalognovember 2018june 2017

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

Light sensor

A sensor that monitors the intensity of ambient light when working with a laptop. Mainly used for automatic brightness control. So, in a darkened room, the backlight of the screen is dimmed, which reduces eye fatigue and helps save energy; and in bright light, the brightness of the display also increases so that the image remains visible.

Note that, technically, a webcam can be used to estimate ambient light and adjust screen brightness (see below). However, most often this is not a regular way to use it; so the presence of a light sensor is indicated mainly for those devices where a separate specialized sensor is responsible for this function.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
Apple MacBook Air 13 (2018) often compared
Apple MacBook Pro 13 (2017) often compared