USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Protherm Panther 25 KTO 24.6 kW vs Protherm Panther 25 KTV 24.6 kW

Add to comparison
Protherm Panther 25 KTO 24.6 kW
Protherm Panther 25 KTV 24.6 kW
Protherm Panther 25 KTO 24.6 kWProtherm Panther 25 KTV 24.6 kW
from $832.00
Outdated Product
from $626.37 up to $696.08
Outdated Product
TOP sellers
Main
Undemanding to water hardness and gas quality. Comfort function. Informative LCD display.
Energy sourcegasgas
Installationwallwall
Typesingle-circuit (heating only)dual-circuit (heating and DHW)
Heating area184 m²184 m²
Technical specs
Heat output24.6 kW24.6 kW
Min. heat output8.9 kW8.4 kW
Power supply230 V230 V
Power consumption147 W147 W
Rated current0.4 A
Coolant min. T38 °С38 °С
Coolant max. T85 °С80 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar
Consumer specs
DHW min. T38 °С
DHW max. T60 °С
Performance (ΔT ~30 °C)12 L/min
"Summer" mode
Heated floor mode
Warm start
Circulation pump
Boiler specs
Efficiency92.8 %92.8 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100, 80/125, 80/80 mm
60/100 mm /80/80 for split flue/
Inlet gas pressure20 mbar20 mbar
Max. gas consumption2.84 m³/h2.8 m³/h
Expansion vessel capacity7 L7 L
Expansion vessel pressure3 bar3 bar
Heat exchangersteelcopper
Connections
Mains water intake3/4"
DHW flow3/4"
Gas supply3/4"3/4"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
 
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
power outage
 
frost protection
More specs
Dimensions (HxWxD)740x410x311 mm740x410x311 mm
Weight36 kg37 kg
Added to E-Catalogapril 2013november 2010

Type

Depending on the set of functions, boilers are divided into single-circuit and dual-circuit.

- Single-circuit boilers are equipped with one heat exchanger, in which the heat from fuel combustion is transferred to the heat medium of the heating system. The only function of such boilers is space heating. It is technically possible to use single-circuit boilers to provide hot water, but this requires an additional tank (the so-called indirect water heater).

- In dual-circuit boilers, the primary heat exchanger is supplemented by a secondary one. Due to this, such a boiler, in addition to heating the room, also provides a hot water supply. In this case, both running water and water accumulated in a special tank(see Built-in water heater tank) can be used.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Rated current

The current consumed by the electric boiler (see "Power source") during normal operation.

This parameter directly depends on the power. It is required primarily for organizing the connection: wiring and automation must safely deal with the current consumed by the unit.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW circuit max. pressure

The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT ~30 °C)

The performance of a dual-circuit boiler in hot water mode when water is heated by approximately 30 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain ΔT — namely 25 °C, 30 °C and/or 50 °C. And it is worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the mode ΔT ~ 30 °C and give out at least warm water at 40 °C, the initial temperature of cold water should be about 10 °C (10 + 30=40 °C). A similar temperature can be found in wells in the warm season, and cold water in the ce...ntralized water supply system often warms up to 10 °C in the warm season. However, boilers, including dual-circuit boilers, are switched on mainly in cold weather, when the initial water temperature is noticeably lower. Accordingly, if the boiler is used as the main water heater, heating to the claimed temperatures (see "DHW min. T", "DHW max. T") often requires a greater ΔT than 30 °C, and the performance is less than indicated in this paragraph. But when operating in the preheating mode (when the water is heated to the desired temperature by an additional device like a boiler), this parameter describes the capabilities of the unit very reliably.

"Summer" mode

It is an operating mode designed for the warm season. In this mode, it works only to provide domestic hot water, and the heating is turned off. If the boiler is equipped with an outside temperature sensor, this sensor is also switched off in summer mode so that the heating does not turn on at night when the outside temperature drops.
Protherm Panther 25 KTV often compared