USA
Catalog   /   Photo   /   Camera Lenses

Comparison Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor vs Nikon 70-300mm f/4.0-5.6G AF Zoom-Nikkor

Add to comparison
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor
Nikon 70-300mm f/4.0-5.6G AF Zoom-Nikkor
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-NikkorNikon 70-300mm f/4.0-5.6G AF Zoom-Nikkor
from $410.00 up to $663.96
Outdated Product
from $16.37 
Expecting restock
TOP sellers
Lens typetelephoto lenstelephoto lens
System
Nikon
Nikon
Mount
Nikon F
Nikon F
Specs
Focal length
70 - 300 mm /105 – 450 mm with APS-C sensors (Nikon DX format)/
70 - 300 mm
Aperture valuef/4.5 - f/5.6f/4.0 - f/5.6
Viewing angles
34° 20' - 8° 10' /22° 50' - 5° 20' with APS-C sensors (Nikon DX format)/
34° 20' - 8° 10' /22° 50' - 5° 20' with APS-C sensors (Nikon DX format)/
Min. diaphragm
32 /32 - 40/
32
Minimum focus distance1.5 m1.5 m
Maximum zoom0.250.26
Design
Sensor sizefull frame/APS-Cfull frame/APS-C
Autofocus driveultrasonic drive motoris absent
AF drive (screw driven)
Internal focus
Image stabilization
 /VRII/
Design (elements/groups)
17 elements in 12 groups /including 2 ED elements/
13 elements in 9 groups
Number of diaphragm blades99
Filter diameter67 mm62 mm
Dimensions (diameter/length)80x143.5 mm74x116.5 mm
Weight745 g425 g
Added to E-Catalognovember 2006november 2006

Aperture value

Lens aperture is a characteristic that determines how much the lens attenuates the light flux passing through it. It depends on two main characteristics — the diameter of the active aperture of the lens and the focal length — and in the classical form is written as the ratio of the first to the second, while the diameter of the active aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8 or f/2.0. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Zoom lenses usually have different aperture values for different focal lengths. In this case, the characteristics indicate two aperture values, for the minimum and maximum focal lengths, respectively, for example: f / 4.5-5.6

The larger the aperture of the lens, the shorter shutter speeds it allows you to use when shooting. This is especially important when shooting fast-moving subjects, shooting in low light, etc. And if necessary, the light stream transmitted by the lens can be weakened using a diaphragm (see below).

Another point that directly depends on this indicator is the depth o...f field (the depth of space that is in focus when shooting). The higher the aperture, the smaller the depth of field, and vice versa. Therefore, shooting with artistic background blur (bokeh) requires high-aperture optics, and for a large depth of field, you have to cover the aperture.

Maximum zoom

The degree of magnification of the object being shot when using a lens for macro shooting (that is, shooting small objects at the maximum possible approximation, when the distance to the subject is measured in millimetres). The degree of magnification in this case means the ratio of the size of the image of the object obtained on the matrix of the camera to the actual size of the object being shot. For example, with an object size of 15 mm and a magnification factor of 0.3, the image of this object on the matrix will have a size of 15x0.3=4.5 mm. With the same matrix size, the larger the magnification factor, the larger the image size of the object on the matrix, the more pixels fall on this object, respectively, the clearer the resulting image, the more details it can convey and the better the lens is suitable for macro photography. It is believed that in order to obtain macro shots of relatively acceptable quality, the magnification factor should be at least 0.25 – 0.3.

Autofocus drive

A type of drive that ensures the movement of lens structural elements during automatic focus. Currently, the following types can be used:

Ultrasonic motor. The most advanced type of drive to date. Ultrasonic motors are much faster than conventional motors, provide higher accuracy, consume less power and are virtually silent. However, their cost is quite high.

Stepper motor. Drive control focal length and zoom (zoom). This type of motor is used for the most part only in full-size digital cameras. Among the advantages of a stepper motor, one can note: high reliability and accuracy of operation; in addition, it does not require power supply to maintain focus and zoom. Of course, stepper motors are not without drawbacks. Among the minuses can be identified: slow speed and increased noise. Additionally, a stepper motor is characterized by large dimensions and a rather large weight, which physically does not allow this type of drive to be integrated into the optics of mobile phones and ultra-compact cameras.

— Motor. In this case, an electric motor of a traditional design is meant. Such drives are simple and, as a result, inexpensive. Their disadvantages are the relatively low speed of operation, as well as the noise produced during this; the latter can sometimes be critical — for example, when shooting wildlife. Recently, designers have been us...ing various tricks to neutralize these shortcomings, but in general, the characteristics of conventional motors still remain relatively modest.

— Is absent. The complete absence of an autofocus motor in the lens. Focus such optics can be carried out either by the “screwdriver” system, or strictly manually (for more details on both options, see below).

AF drive (screw driven)

The presence in the lens of an autofocus drive of the "screwdriver" type. Lenses of this design do not have their own autofocus motor at all — it is located in the camera. Interchangeable optics, on the other hand, carries only the focus mechanism itself and has a special socket, with which, when installing the lens, the axis of the camera motor is joined.

Historically, the "screwdriver" is one of the first types of autofocus, but lenses and cameras with this feature are still widespread, in particular with Pentax and Sony Alpha. There are several reasons for this: although “screwdrivers” lose to ultrasonic drives, for the most part they outperform lenses with traditional motors; at the same time, due to the transfer of the engine to the camera, the weight and dimensions of the lens are reduced.

Internal focus

Lenses using the internal focus system. In such optics systems, focus is carried out only due to the movement of elements inside the lens body; the outer parts remain completely fixed and the size of the lens does not change. This provides additional convenience — in particular, it allows you to easily use petal hoods and those types of filters for which the correct position on the lens is important (in particular, gradient ones). In addition, the absence of moving elements from the outside has a positive effect on security and resistance to dust / precipitation (although the specific degree of dust and water protection may be different).

Image stabilization

The presence in the lens of its own image stabilization system. Such a system includes gyroscopes and movable lenses that compensate for small tremors of the lens and prevent the appearance of “shake”. Stabilization is especially relevant when shooting handheld, especially at slow shutter speeds and/or at long distances with high magnification: it is in such conditions that “shake” affects the quality of the image the most. At the same time, it should be taken into account that the presence of a stabilizer significantly affects the weight, dimensions and, above all, the price of optics; at the same time, some modern cameras have their own stabilization systems (due to matrix shift). Therefore, it makes sense to choose a lens with this function in the case when maximum protection against “shake” is of fundamental importance.

Design (elements/groups)

The number of elements (in fact, the number of lenses) included in the design of the lens, as well as the number of groups in which these elements are combined. Usually, the more elements provided in the design, the better the lens handles with distortions (aberrations) when light passes through it. On the other hand, numerous lenses increases the dimensions and weight of the optics, reduces light transmission (for more details, see "Aperture") and also puts forward increased requirements for the quality of processing, which affects the cost of the lens.

Filter diameter

Thread diameter for installation on the filter lens. Light filters are devices for changing the parameters of the light flux entering the lens. They can be used for highlighting individual colours, coloring the entire image in one colour, darkening the image, correcting colour temperature and light balance, shooting in the infrared range, etc. Also, a light filter can play the role of protection against pollution. For successful installation on the lens, the diameter of the filter must match the diameter of the filter specified for this model of optics.
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor often compared
Nikon 70-300mm f/4.0-5.6G AF Zoom-Nikkor often compared