USA
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison Sennheiser PXC 550-II vs Sennheiser PXC 550 Wireless

Add to comparison
Sennheiser PXC 550-II
Sennheiser PXC 550 Wireless
Sennheiser PXC 550-IISennheiser PXC 550 Wireless
from $348.20 
Outdated Product
Compare prices 1
TOP sellers
Connection and design
Design
overhead, closed
full size Over-Ear
foldable
swiveling earcups
overhead, closed
full size Over-Ear
foldable
swiveling earcups
Connection typecombinedcombined
Connection
mini-Jack (3.5 mm)
 
Bluetooth v 5.0
mini-Jack (3.5 mm)
Jack (6.35 mm) /adapter/
Bluetooth v 4.2
PlugL-shapedL-shaped
Cable supplysingle-sidedsingle-sided
Cable length1.4 m
Range10 m10 m
Cable typeroundround
Detachable cable
Specs
Impedance46 Ohm
46 Ohm /490 ohms — with noise reduction on/
Frequency range17 – 23000 Hz17 – 23000 Hz
Sensitivity110 dB110 dB
Speaker size32 mm
Emitter typedynamicdynamic
Harmonic distortion coefficient< 0.5 %
Microphone specs
Microphonebuilt into the casebuilt into the case
Frequency range50 – 10000 Hz
Sensitivity-34 dB
Microphone noise cancelingENC
Microphone mute
Features
Volume control
Noise cancellationANCANC
Transparent mode
NFC
Codec support
aptX Low Latency
AAC
aptX
 
Power supply
Power sourcebatterybattery
Headphone battery capacity700 mAh
Operating time (music)20 h
20 h /with noise reduction and Bluetooth/
Charging portmicroUSB
General
Weight227 g227 g
In box
sheath
additional cable
airplane adapter
sheath
 
 
Color
Added to E-Catalogoctober 2019august 2016

Connection

The specific connection interface provided in the headphones. At the same time, some models may provide several options at once - these are either combined devices (see “Connection type”) or wired headphones equipped with additional adapters.

— micro-Jack (2.5 mm). A wired connector similar to the popular mini-Jack 3.5 mm (see below), but smaller in dimensions. Equipment with such a connection is rare - they are mostly miniature devices, where there is simply no room for a 3.5 mm connector. Accordingly, this interface has not become widespread among headphones: it is almost never found in its pure form; models with such a plug are usually supplemented with an adapter or cable for a mini-Jack.

mini-Jack(3.5 mm). Perhaps the most popular modern type of audio connector; If a device claims to have a headphone output, most likely it is a 3.5 mm jack. Accordingly, most headphones with a wired connection use this type of connector. It is worth noting that headphones with a microphone designed for such a connection are equipped with a special plug for a combined headphone + microphone audio connector (similar connectors are popular in portable gadgets and laptops). But with a jack intended only for “ears” without a microphone, such a plug may not work correctly. An alternative could be headphones equipped with two separate mini-jack plugs; See below for more details on this option.

mini-Jack (2 x 3.5 mm).... Models with two 3.5 mm mini-jack plugs. This option is guaranteed to mean that we are not talking about classic headphones, but about a headset with a microphone: one plug is used for headphones, the second for a microphone. Such models are convenient when used with equipment that has separate 3.5 mm jacks for “ears” and a microphone - for example, for a PC.

Pentaconn (4.4 mm). It is a 5-pin balanced output. Pentaconn uses a larger plug compared to the mini-Jack; its size is 4.4 mm, which is stronger and more reliable than the 3.5 mm connection. Pentaconn's balanced connection makes it possible to work with high-power audio signals. Thanks to this connection, it is possible to transmit a signal over a fairly long distance. Accordingly, such a connector is relevant for headphones of the highest category.

Jack (6.35 mm). The largest type of Jack-type audio connector found in modern technology. Outputs of this type are found mainly in stationary audio equipment - for portable devices they are too bulky, where it is easier to use a 3.5 mm mini-jack. At the same time, the 6.35 mm connector is considered a more suitable interface for professional and audiophile-grade equipment: it provides a more reliable connection, greater contact density and, accordingly, less likelihood of interference. Therefore, although relatively few headphones (mostly premium solutions) are equipped with their own Jack type connector, many models with a 3.5 mm mini-Jack plug are equipped with an adapter to 6.35 mm.

- XLR. A characteristic round connector with a locking lock and 3 contacts (there are other options for quantity). Typically, it is used to transmit an analog signal over a balanced connection. This connection provides high immunity to interference, typical for professional use; at the same time, the connector itself has quite large dimensions. In view of all this, the presence of XLR is relevant mainly for headphones designed for use with advanced stationary equipment.

Bluetooth. The most popular wireless connection option in modern headphones. This is due to the fact that built-in Bluetooth modules are available in almost any modern smartphone, tablet or laptop, and appropriate adapters can be produced for devices without this module (for example, a PC). True, the sound quality with a traditional Bluetooth connection is relatively low, but to correct the situation, special technologies like aptX and aptxHD are increasingly being used (see “Codec support”).
It is also worth noting that Bluetooth modules can correspond to different versions (the latest for 2022 are Bluetooth 5.0, Bluetooth 5.1, Bluetooth 5.2, Bluetooth 5.3, Bluetooth 5.4). This point does not affect the sound quality, but it determines a number of additional nuances - communication range and reliability , the ability to work through walls and other obstacles, resistance to interference, etc. In modern “ears” you can find the following versions of Bluetooth:
  • Bluetooth v 4.0. An update in which the capabilities of version 3.0 (classic + high-speed Bluetooth) were supplemented with a third format - Bluetooth LE (low energy consumption). This communication standard is intended mainly for transmitting small amounts of information - in particular, service data packets to maintain a connection. At the same time, the creators managed to combine economical energy consumption and a long communication range - it can reach 100 m. This has a positive effect on the stability of the connection.
  • Bluetooth v4.1. Development and improvement of Bluetooth 4.0. If we talk specifically about headphones, the key innovation for them in this version is improved noise immunity when working near 4G (LTE) mobile communication devices (in earlier standards, Bluetooth and LTE signals could overlap, which led to failures). So, for use with a 4G smartphone, headphones with Bluetooth support of at least v 4.1 are definitely recommended.
  • Bluetooth v4.2. Further, after 4.1, development of the Bluetooth standard, which mainly introduced a number of general improvements in reliability and noise immunity.
  • Bluetooth v 5.0. Major Bluetooth update released in 2016. One of the most notable innovations was the introduction of two additional operating modes of Bluetooth LE: an increased speed mode (by reducing the range) and an extended range mode (by reducing the speed). In the case of headphones, the main significance of these innovations is to improve the overall reliability of the connection, increase its range and reduce the number of dropouts.
  • Bluetooth v5.1. Update version v 5.0, in which, in addition to general improvements in the quality and reliability of communication, an interesting feature has appeared, such as determining the direction from which the Bluetooth signal is coming. Thanks to this, a smartphone or other gadget that supports this standard is able to determine the location of connected devices with an accuracy of a centimeter; This can be useful, for example, for finding headphones that have disappeared from sight but are still working.
  • Bluetooth v5.2. The next update, after 5.1, is Bluetooth 5th generation. The main innovations in this version are a number of security improvements, additional optimization of power consumption in LE mode and a new audio signal format for synchronizing parallel playback on multiple devices.
  • Bluetooth v5.3 was introduced at the dawn of 2022. Among the innovations in it, they accelerated the process of negotiating a communication channel between the controller and the device, implemented the function of quickly switching between the operating state in a low duty cycle and a high-speed mode, and improved the throughput and stability of the connection by reducing susceptibility to interference. When unexpected interference occurs in Low Energy mode, the procedure for selecting a communication channel to switch from now on has been accelerated.
  • Bluetooth v5.4. introduced at the beginning of 2023, increased the range and speed of data exchange. Also in Bluetooth v 5.4, the energy-saving BLE mode has been improved. This version of the protocol uses new security features to protect data from unauthorized access, has increased connection reliability by selecting the best channel for communication, and prevents connection losses due to interference.
Radio channel. Wireless connection via radio channel that does not use Bluetooth technology (see above). Such headphones are usually equipped with an adapter that connects to the signal source wired - for example, via USB or mini-Jack 3.5. This connection method is more universal than Bluetooth; it can be used even with devices that do not have wireless modules. In addition, the radio channel provides a long range (often up to several tens of meters), and the sound quality is quite high even without the use of special technologies. The disadvantage of this option is the presence of an adapter, which is not always appropriate: for example, it is more convenient to use Bluetooth headphones with a tablet or smartphone.

- IR channel. Another method of wireless connection, the peculiarity of which is that it does not use radio waves, but infrared radiation. Theoretically, the advantage of such a connection is its resistance to electromagnetic interference, the disadvantage is that it only works in line of sight. In practice, the situation is such that in most cases it is easier to use Bluetooth or a radio channel for a wireless connection. So this option is found exclusively in specialized devices for equipment equipped with their own IR outputs - in particular, among headphones for car monitors.

— USB A. Wired connection to a standard (full-dimensions) USB connector. This option is found exclusively among headphones designed for computers/laptops or gaming consoles. One of its advantages is that sound via USB is transmitted digitally and is processed not by the computer's audio card, but by the built-in headphone converter; such a converter often provides better sound quality than the mentioned audio card. In addition, multi-channel audio can be transmitted via a USB connection - this point will be especially appreciated by gamers. Another advantage is that when using USB headphones, specialized audio outputs remain free, and you can connect other equipment to them - for example, computer speakers or a vibration pad.

- USB C. A relatively new type of USB connector, used in both desktop computers and portable devices - as a successor to microUSB. It is not very different in dimensions, but has a more advanced design - in particular, it is made double-sided, which makes connection easier. Most often complemented by other connection options (they can be either wired or wireless).

- Lightning. A universal connector used in Apple portable devices - iPhone smartphones and iPad tablets - since 2012. Not used by other manufacturers. Accordingly, models with such an interface are designed specifically for Apple technology (primarily iPhone and iPod touch players). This type of connection is especially relevant given the fact that in the latest iPhones the manufacturer has completely abandoned a separate audio output, and the only option for connecting headphones is the Lightning port.

— Branded connector. A connection connector that does not belong to generally accepted standards and is used to a limited extent in equipment from one or several manufacturers. Such connectors are found mainly among headphones for mobile phones. However, due to general standardization, this option has practically disappeared from the scene. Theoretically, the branded connector is also the Lightning described above, but it is separated into a separate category due to the popularity of Apple technology.

Cable length

The length of the cable supplied with the headphones with the appropriate connectivity.

The optimal cable length depends on the planned format of the "ears". So, for pocket gadgets, 1 metre or less is often enough, for a computer it is already desirable to have a wire for 1 – 2 m, and preferably 2 – 3 m. And models with a longer cable length — 3 – 5 m or even more — are mainly designed for specific tasks, such as connecting to a TV or using in recording studios.

Recall that in some models the cable is removable (see below) and can be replaced if necessary with a longer or shorter one. Also note that there are extension cables that allow you to increase the length of the main wire; such a cable may even be included in the delivery, this point (and the length of the additional cable) is usually specified in the notes.

Speaker size

The diameter of the speaker installed in the headphones; models with multiple drivers (see "Number of drivers"), usually, the size of the largest speaker is taken into account, other dimensions can be specified in the notes.

In general, this parameter is relevant primarily for over-ear headphones (see "Design"). In them, emitters can have different sizes; the larger it is, the more saturated the sound is and the better the speaker reproduces the bass, however, large emitters have a corresponding effect on the dimensions, weight and price of the headphones. But in-ear "ears" and earbuds, by definition, have very small speakers, and rich bass in them is achieved due to other design features.

Harmonic distortion coefficient

The coefficient of harmonic distortion produced by this model of headphones.

This parameter determines the amount of non-linear distortion introduced by the headphones into the reproduced sound. The lower it is, the less such distortions, the cleaner and closer to the original sound is. So, an indicator of 1% or more can be considered tolerable at best, from 0.5% to 1% — good, less than 0.5% — excellent (such indicators are acceptable even for monitor headphones), and less than 0.1% — almost perfect.

Note that a low harmonic coefficient in itself does not guarantee high-quality sound — a lot depends on other features of the headphones, primarily the frequency response.

Frequency range

The range of audio frequencies that the headphone's own microphone can normally "hear".

Theoretically, the wider this range, the more advanced and high-quality the microphone is, the closer the sound transmitted by it is to the real one. In fact, extensive frequency coverage is not always required. So, the working range of the human ear is about 16 – 22,000 Hz, and even then not everyone hears its upper part. And human speech usually covers frequencies from 500 Hz to 2 kHz, at least this range is considered quite sufficient for its transmission. So if you need a microphone for simple tasks like voice communication on the Internet or game chat, you can not pay much attention to the frequency range: even in the most modest models, it is more than sufficient for normal speech transmission.

Sensitivity

The sensitivity of the headphone's own microphone.

The more sensitive the microphone, the higher the signal level from it, at the same sound volume, and the better this model is suitable for picking up quiet sounds. Conversely, low sensitivity filters out background noise. At the same time, we note that these nuances are important mainly in professional work with sound. And for simple tasks like voice communication over the phone or via the Internet, sensitivity does not really matter: in headphones of this specialization, it is selected in such a way as to ensure that the microphone is guaranteed to work.

Microphone noise canceling

The presence of a noise reduction system in its own headphone microphone.

In accordance with the name, such a system is designed to eliminate extraneous noise - primarily during conversations. It is usually based on an electronic filter that passes the sound of a human voice and cuts off background sounds such as city noise, the rumble of wind in the microphone grille, etc. As a result, even in noisy environments, thanks to the noise reduction of the microphone, speech is clear and intelligible; True, the system inevitably introduces distortions into the final sound, but they are not critical in this case.

— ENC. ENC (Environment Noise Cancellation) technology significantly reduces ambient noise with directional microphones. It is used both in gaming devices so that gamers can easily communicate in voice chat, and in TWS earphone models so that you can comfortably talk on the phone in a noisy environment.

— cVc. Microphone noise reduction cVc (Clear Voice Capture) is an advanced technology that is found mainly in expensive headphone models. cVc algorithms effectively suppress echo and noise from the environment. Sound processing using this technology is carried out at several levels at once - the algorithm determines the reference signal-to-noise level, automatically adjusts speech to the desired volume level, applies adaptive equalizers to process the entire voice, as well as specialized filters to remove...low-frequency bubbling, sibilants and hissing.

Microphone mute

The ability to turn off your own headphone microphone using a special button or switch.

This feature is relevant mainly for phone calls, Skype, etc. It is useful in situations where you need to distract from the main conversation and say something that the interlocutor does not need to hear. Disconnecting the microphone is easier and more reliable than covering it with your hand or disconnecting the headphones entirely.

Note that the ability to turn off the microphone may be provided in the communication programme itself (the same Skype, for example). However, again, using the switch on the headphones is more convenient.

Transparent mode

A feature that allows the user to hear the sounds of the surrounding world without removing the headphones.

This possibility is relevant mainly for models with a high degree of sound insulation; so the transparent mode can be found mainly among in-ear models, as well as overhead "ears" of the Over Ear format in a closed acoustic design. A special microphone is responsible for the operation of the function, which “listens” to the surrounding sounds and broadcasts them to the headphones. In Talk Through mode, you can, for example, listen to the interlocutor or control the environment on a busy street. And some headphones with this feature also have more advanced functions, including automatic adjustment to the situation: such models turn on on their own to transmit speech, “hearing” the loud voice of a person nearby. Individual headphones react to loud street noises in the transparent Ambient Aware mode — it means broadcasting noises through the speaker that can be potential danger signals (screams, car signals, etc.).

Note that most models with Talk through also have an active noise reduction function (see above), and the “transparent mode” in them is one of the noise reduction modes. However, exceptions to this rule are possible — technically transparent mode does not have to be combined with noise reduction.
Sennheiser PXC 550-II often compared
Sennheiser PXC 550 Wireless often compared