USA
Catalog   /   Computing   /   Components   /   Hard Drives

Comparison WD Black 3.5" Gaming Hard Drive WD2003FZEX 2 TB vs WD Caviar Blue WD2500AAJB 250 GB

Add to comparison
WD Black 3.5" Gaming Hard Drive WD2003FZEX 2 TB
WD Caviar Blue WD2500AAJB 250 GB
WD Black 3.5" Gaming Hard Drive WD2003FZEX 2 TBWD Caviar Blue WD2500AAJB 250 GB
Compare prices 5
from $41.00
Outdated Product
TOP sellers
Placementbuilt-inbuilt-in
TypeHDDHDD
FeaturespCpC
Size2000 GB250 GB
Form factor3.5 "3.5 "
Manufacturer's warranty5 years3 years
Connection
Interface
 
SATA
SATA 2
SATA 3
IDE
 
 
 
Technical specs
Cache memory64 MB8 MB
Record technologyCMR
RPM7200 rpm7200 rpm
Data transfer rate164 MB/s
Average search time9 ms
Operation power consumption9.5 W5.99 W
Standby power consumption8.1 W0.66 W
Shockproof30 G
Reading noise level34 dB30 dB
Standby mode noise level29 dB29 dB
MTBF300 K50 K
General
Size147x102x26 mm
Weight600 g430 g
Added to E-Catalogdecember 2010december 2010

Size

Rated capacity is one of the key parameters of a hard drive, which determines how much information can fit on it. For SSHD, this item indicates the capacity of only the hard drive, for RAID arrays, the total capacity of the array.

The volume of information in the modern world is constantly growing and require more and more capacious drives. So in most cases it makes sense to choose a larger disk. In fact, the question of choosing this parameter often rests only on the price: the cost of the drive directly depends on the volume.

If the question is in such a way that you need to choose a disk "smaller and cheaper, but that's enough" — it's worth evaluating the amount of information that you have to deal with and the specifics of use. For example, for an ordinary office PC, designed mainly for working with documents, an internal drive of 2 TB and even 1 TB will be more than enough, and an enthusiastic gamer will need 4 TB, 6 TB and even 8 TB will not be superfluous. If you use a disc for recording from camcorders, then you can get a 10 TB, 12 TB, 14 TB, 16 TB, 18 TB or more HDD.

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one.

Interface

— SATA. Nowadays, it is the most popular interface for connecting internal hard drives. the first version of SATA provides data transfer rates of about 1.2 Gbps, SATA 2 has a practical data transfer rate of about 2.4 Gbps (300 MB / s), and the most advanced generation of SATA 3 has a speed of 4.8 Gbps (600 Mbps)

eSATA. Modification of the SATA interface, designed to connect external hard drives; not compatible with internal SATA. The practical data transfer rate is similar to SATA 2 at about 2.4 Gbps (300 Mbps).

USB 2.0. The earliest of the USB standards found in modern hard drives — and exclusively external (see "Performance"). Provides connection to a traditional full-size USB port, provides data transfer rates up to 480 Mbps, as well as a rather low power supply, which is why drives with this type of connection often require additional power. In light of all this, and the advent of the more advanced USB 3.2 standard (see below), USB 2.0 is considered obsolete today and is extremely rare, mainly in inexpensive and early models of drives. However, a drive with this interface can also be connected to a newer USB port — the main thing is that the connectors match.

USB 3.2 gen1(previously USB 3.1 gen1 and USB 3.0). The standard for connecting external HDDs, which replaced the...USB 2.0 described above. Uses a traditional full-size USB connector, delivers data transfer speeds up to 4.8 Gbps (600 Mbps) and higher power ratings, making these drives easier to handle without external power. However, for the same reason, you need to be careful when connecting USB 3.2 gen1 drives to older USB 2.0 connectors — such a connector may not have enough power to power a newer drive.

USB 3.2 gen2. Further development of the USB 3.2 standard (formerly known as USB 3.1 gen2 and USB 3.1). The maximum data transfer rate in this version has been increased to 10 Gbps, and the power supply can reach 100 W (supporting USB Power Delivery technology). At the same time, drives with this type of connection can also work with earlier versions of full-size USB connectors — the main thing is that there is enough power.

USB-C 3.2 gen1(formerly USB-C 3.1 gen1 and USB-C 3.0). USB Type-C connection compliant with USB 3.2 gen1 capabilities. These features are described in more detail above, the difference from the “regular” USB 3.2 gen1 in this case lies only in the type of connector: this is a relatively small (slightly larger than microUSB) socket, which also has a double-sided design. Due to its compact size, USB-C is found both in full-sized PCs and laptops, and in compact gadgets like smartphones and tablets; some drives with this connection are initially capable of "mobile" use.

USB-C 3.2 gen2(formerly USB-C 3.1 gen2 and USB-C 3.1). Updating and improving the USB-C 3.2 gen1 described above — the same USB-C connector and increased data transfer rate to 10 Gbps (as in the "regular" USB 3.2 gen2).

— IEEE 1394. Also commonly known as "FireWire". A universal connector, similar in capabilities to USB 2.0 (see above), but used much less often, and nowadays is practically obsolete.

— Thunderbolt. High-speed interface for connecting external peripherals. It is used mainly in Apple computers and laptops, although it is also found in equipment from other manufacturers. Note that in modern HDDs there are mainly two versions of Thunderbolt, which differ not only in speed, but also in connector: Thunderbolt v2(up to 20 Gbps) uses a miniDisplayPort plug, and Thunderbolt v3(up to 40 Gbps) — USB type C plug (see above). Thus, in some hard drives, USB-C and Thunderbolt connections are implemented through a single hardware connector, which automatically detects which computer input the device is connected to.

— S.A.S. Modification of the SCSI interface, provides data transfer rates up to 6 Gbps (750 Mb / s). It is used mainly in servers, in desktop PCs and laptops it is practically not used.

— Fibre Channel. Professional high-speed interface primarily used in server drives ("Purpose"); similar in many ways to SAS. Allows "hot" replacement of drives; the actual data transfer rate over Fibre Channel, depending on the version, can reach 12.8 Gbps.

Cache memory

The amount of internal hard drive memory. This memory is an intermediate link between the high-speed computer RAM and the relatively slow mechanics responsible for reading and writing information on disk platters. In particular, the buffer is used to store the most frequently requested data from the disk — thus, the access time to them is reduced.
Technically, the size of the buffer affects the speed of the hard drive — the larger the buffer, the faster the drive. However, this influence is rather insignificant, and at the level of human perception, a significant difference in performance is noticeable only when the buffer size of the two drives differs many times — for example, 8 MB and 64 MB.

Record technology

CMR(Conventional Magnetic Recording) is a classic method of magnetic recording, characterized by high data access speed. CMR hard drives are used in systems where it is important to provide high (as far as possible) data read/write speed. These are user computers, security video surveillance systems, etc. The main disadvantage of CMR hard drives is the high complexity of creating volume drives, which is reflected in their price. Additionally, HDDs with CMR technology are quite “gluttonous” in terms of power supply.

SMR(Shingled Magnetic Recording) — a promising technology for magnetic recording, which is called "tiled". SMR allows to achieve high data density, which in turn increases the capacity of memory drives and lowers their market value. SMR hard drives have slow rewriting speed, which makes such memory drives poorly suited for use in client computer systems. But they have proven themselves well when working as part of data processing centers, archives and similar systems for which low write / rewrite speed is not critical. However, some companies still produce SMR solutions for personal and even mobile systems. These HDDs use an optimized write/rewrite technology called Drive-Managed SMR (DM-SMR).

Data transfer rate

The speed of data transfer between the disk and client devices is determined by the type of drive, spindle speed, memory buffer size and connection connectors. The last parameter is the most important, since it is impossible to exceed the bandwidth of a particular interface.

Average search time

The time it takes for the hard disk mechanics to find random requested data to read. For each specific case, the search time is different, as it depends on the location of the data on the surface of the disk and the position of the read head, therefore, the average value is indicated in the characteristics of hard drives. The lower the average seek time, the faster the disk works, all other things being equal.

Operation power consumption

The amount of power consumed by the disk when reading and writing information. In fact, this is the peak power consumption, it is in these modes that the drive consumes the most energy.

HDD power consumption data is needed primarily to calculate the overall system power consumption and power supply requirements for the system. In addition, for laptops that are planned to be used often "in isolation from outlets", it is advisable to choose more economical drives.

Standby power consumption

The amount of power consumed by the disk "idle". In the on state, the disk platters rotate regardless of whether information is being written or read or not — maintaining this rotation takes the energy consumed while waiting.

The lower the power consumption while waiting, the more economical the disk is, the less energy it consumes. At the same time, we note that in fact this parameter is relevant mainly when choosing a drive for a laptop, when energy efficiency is crucial. For stationary PCs, “idle” power consumption does not play a special role, and when calculating the requirements for a power supply, it is necessary to take into account not this indicator, but the power consumption during operation (see above).
WD Black 3.5" Gaming Hard Drive often compared