Dark mode
USA
Catalog   /   Computing   /   Components   /   RAM

Comparison Crucial Ballistix RGB DDR4 2x8Gb BL2K8G30C15U4BL vs HyperX Predator DDR4 2x8Gb HX430C15PB3K2/16

Add to comparison
Crucial Ballistix RGB DDR4 2x8Gb BL2K8G30C15U4BL
HyperX Predator DDR4 2x8Gb HX430C15PB3K2/16
Crucial Ballistix RGB DDR4 2x8Gb BL2K8G30C15U4BLHyperX Predator DDR4 2x8Gb HX430C15PB3K2/16
Outdated Product
from $98.48 up to $118.00
Outdated Product
User reviews
0
0
0
2
TOP sellers
Main
Small height. Overclocking potential. Light synchronization.
Memory capacity16 GB16 GB
Memory modules22
Form factorDIMMDIMM
TypeDDR4DDR4
Memory ranksingle rank
Specs
Memory speed3000 MHz3000 MHz
Clock speed24000 MB/s24000 MB/s
CAS latencyCL15CL15
Memory timing15-16-16-3515-17-17
Voltage1.35 V1.35 V
Coolingradiatorradiator
Module profilestandardstandard
Module height39.2 mm42.2 mm
More features
overclocking series
XMP
overclocking series
XMP
Lightingmulti compatibility
Color
Added to E-Catalogfebruary 2020july 2016

Memory rank

The number of ranks provided in the memory bar.

The rank in this case is called one logical module — a chipset with a total capacity of 64 bits. If there is more than one rank, this means that several logical ones are implemented on one physical module, and they use the data transmission channel alternately. A similar design is used in order to achieve large amounts of RAM with a limited number of slots for individual brackets. At the same time, it should be said that for consumer computers, you can not pay much attention to the memory rank — more precisely, peer-to-peer modules are quite enough for them. But for servers and powerful workstations, two-, four- and even eight-rank solutions are produced.

Note that other things being equal, a larger number of ranks allows achieving larger volumes, however, it requires more computing power and increases the load on the system.

Memory timing

Timing is a term that refers to the time it takes to complete an operation. To understand the timing scheme, you need to know that structurally RAM consists of banks (from 2 to 8 per module), each of which, in turn, has rows and columns, like a table; when accessing memory, the bank is selected first, then the row, then the column. The timing scheme shows the time during which the four main operations are performed when working with RAM, and is usually written in four digits in the format CL-Trcd-Trp-Tras, where

CL is the minimum delay between receiving a command to read data and the start of their transfer;

Trcd — the minimum time between the selection of a row and the selection of a column in it;

Trp is the minimum time to close a row, that is, the delay between the signal and the actual closing. Only one bank line can be opened at a time; Before opening the next line, you must close the previous one.

Tras — the minimum time the row is active, in other words, the shortest time after which the row can be commanded to close after it has been opened.

Time in the timing scheme is measured in cycles, so the actual memory performance depends not only on the timing scheme, but also on the clock frequency. For example, 1600 MHz 8-8-8-24 memory will run at the same speed as 800 MHz 4-4-4-12 memory—in either case timings, if expressed in nanoseconds, will be 5-5-5-15.

Lighting

Decorative href="/list/188/pr-29071/">lighting,, usually using LEDs. It does not affect the functionality of the memory module, but it gives it a bright and unusual appearance, which is appreciated by fans of external computer tuning. Of course, in order for this backlighting to be visible, the case must have at least a viewing window, and ideally a completely transparent wall.

It may include synchronization technology. Synchronization itself allows you to “coordinate” the memory backlight with the backlight of other system components — the motherboard, processor, video card, case, keyboard, mouse, etc. Thanks to this coordination, all components can synchronously change color, turn on/off simultaneously, etc. The specific features of such backlighting depend on the synchronization technology used, and each manufacturer usually has its own (Aura Sync for Asus, RGB Fusion for Gigabyte, etc.). The compatibility of components also depends on this: they must all support the same technology. So the easiest way to achieve backlight compatibility is to assemble components from one manufacturer. However, there are many memory modules in the multi compatibility format — that is, capable of working with several backlighting technologies at once. As a rule, such memory is produced by manufacturers that do not have their own backlighting technologies; a specific list of compatible technologies should be clarified separately.
Crucial Ballistix RGB DDR4 2x8Gb often compared
HyperX Predator DDR4 2x8Gb often compared