Dark mode
USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus ROG STRIX X570-E Gaming vs Asus ROG STRIX X570-F Gaming

Add to comparison
Asus ROG STRIX X570-E Gaming
Asus ROG STRIX X570-F Gaming
Asus ROG STRIX X570-E GamingAsus ROG STRIX X570-F Gaming
Compare prices 3Compare prices 1
User reviews
0
0
0
1
TOP sellers
Main
Overclocker power subsystem. Efficient cooling. Excellent auto acceleration. Built-in wireless interfaces. Wi-Fi 6 support. Backlight with Asus Aura Sync. Two LAN ports. SupremeFX audio. RAM support up to 4400 MHz. USB c.
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factorATXATX
Power phases1614
VRM heatsink
Heat pipes
POST encoder
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetAMD X570AMD X570
BIOSAmiAmi
UEFI BIOS
Active cooling
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency5100 MHz5100 MHz
Max. memory128 GB128 GB
Drive interface
SATA 3 (6Gbps)88
M.2 connector22
M.22xSATA/PCI-E 4x2xSATA/PCI-E 4x
M.2 SSD cooling
Integrated RAID controller
Expansion slots
1x PCI-E slots22
PCI-E 16x slots33
PCI Express4.04.0
CrossFire (AMD)
SLI (NVIDIA)
Steel PCI-E connectors
Internal connections
USB 2.022
USB 3.2 gen111
USB 3.2 gen211
ARGB LED strip2
RGB LED strip2
More featuresThermal sensor, Clear CMOS, M.2 Fan
Video outputs
HDMI output
HDMI versionv.2.0v.2.0b
DisplayPort
DisplayPort versionv.1.2v.1.2
Integrated audio
AudiochipSupremeFXSupremeFX
AmplifierTexas Instruments RC4580Dual OP Amplifiers
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
Wi-FiWi-Fi 6 (802.11ax)
BluetoothBluetooth v 5.0
LAN (RJ-45)2.5 Gbps1 Gbps
LAN ports21
LAN controllerIntel I211-AT, Realtek RTL8125-CGIntel I211-AT
External connections
USB 3.2 gen14
USB 3.2 gen273
USB C 3.2 gen211
Power connectors
Main power socket24 pin24 pin
CPU power8+4 pin8+4 pin
Fan power connectors66
CPU Fan 4-pin2
CPU/Water Pump Fan 4-pin2
Chassis/Water Pump Fan 4-pin2
Added to E-Catalogmay 2019may 2019

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

POST encoder

Standard digital indication system for displaying POST codes for motherboard initialization. Thanks to the POST encoder, you can easily determine which component has a problem.

ARGB LED strip

Connector for connecting an addressable LED strip as a decorative lighting for a computer case. This type of "smart" tape is based on special LEDs, each of which consists of an LED light and a built-in controller, which allows you to flexibly control the luminosity using a special digital protocol and create amazing effects.

RGB LED strip

Connector for connecting a decorative LED strip and other devices with LED indication. Allows you to control the backlight of the case through the motherboard and customize the glow for your tasks, including synchronize it with other components.

HDMI version

HDMI connector version (see above) installed in the motherboard.

— v.1.4. The earliest of the standards found nowadays, which appeared back in 2009. Supports resolutions up to 4096x2160 inclusive and allows you to play Full HD video with a frame rate of up to 120 fps — this is enough even for 3D playback.

— v.1.4b. A modified version of v.1.4 described above, which introduced a number of minor updates and improvements — in particular, support for two additional 3D formats.

— v.2.0. Also known as HDMI UHD, this version introduced full 4K support, with frame rates up to 60 fps, as well as the ability to work with 21:9 ultra-widescreen video. In addition, thanks to the increased bandwidth, the number of simultaneously reproduced audio channels has grown to 32, and audio streams to 4. And in the v.2.0a improvement, HDR support has also been added to all this.

— v.2.1. Another name is HDMI Ultra High Speed. Compared to the previous version, the interface bandwidth has really increased significantly — it is enough to transmit video at resolutions up to 10K at 120 frames per second, as well as to work with the extended BT.2020 colour space (the latter may be useful for some professional tasks). HDMI Ultra High Speed cables are required to use the full capabilities of HDMI v2.1, but older standard features are available with regular cables.

Amplifier

Built-in audio signal amplifier in motherboards with an integrated sound card. Provides higher sound quality through headphones.

Wi-Fi

Wi-Fi version (standard) supported by the motherboard Wi-Fi module. The main function of such modules, regardless of version, is Internet access via wireless routers; however, Wi-Fi can also be used to communicate directly with other devices—for example, to transfer content from a digital camera or control it remotely.

Nowadays you can find support for different Wi-Fi standards (up to Wi-Fi 6, Wi-Fi 6E, Wi-Fi 7). The maximum connection speed primarily depends on this nuance. At the same time, different versions also differ in the ranges used; and they are compatible with each other if they coincide in the ranges used. However, wireless modules of modern motherboards often support not only the Wi-Fi standard specified in the specifications, but also earlier ones; It doesn’t hurt to clarify this point separately, but in most cases there are no compatibility problems. However, to use all the features of a particular version, it must be supported by both devices - both the motherboard and the external device.

The list of major versions looks like this:

- Wi-Fi 3 (802.11g). The oldest standard that is relevant today, in its pure form, is found only in frankly outdated boards. Operates at speeds up to 54 Mbps in the 2.4 GHz band.
— Wi-fi 4 (802.11n). Quite a popular standard, which has only recently begun to give w...ay to more advanced options. Supports both the 2.4 GHz band and the more advanced 5 GHz band, and the maximum data transfer rate is 150 Mbps per channel (up to 600 Mbps with 4 antennas).
— Wi-Fi 5 (802.11ac). Works only on 5 GHz. Initially, the maximum theoretical data transfer rate was 1300 Mbit/s, but since 2016 the 802.11ac Wave 2 standard has been used, where this figure has been increased to 2.34 Gbit/s.
- Wi-Fi 6 (802.11ax). It initially operates on two bands - 2.4 GHz and 5 GHz - but the specification of this standard provides for the possibility of using any operating band between 1 GHz and 7 GHz (as such bands become available). The nominal data transfer speed has increased by only a third compared to Wi-Fi 5, but a number of improvements that increase communication efficiency allow for a significant increase in actual speed - in theory, up to 10 Gbps and even higher.
- Wi-Fi 6E (802.11ax). An improved branch of the Wi-Fi 6 standard with data transfer speeds up to 10 Gbps. The Wi-Fi 6E standard is technically called 802.11ax. But unlike basic Wi-Fi 6, which is named similarly, it provides for operation in the unused 6 GHz band. In total, the standard uses 14 different frequency bands, offering high throughput with many active connections.
— Wi-Fi 7 (802.11be). The technology, like the previous Wi-Fi 6E, is capable of operating in three frequency ranges: 2.4 GHz, 5 GHz and 6 GHz. At the same time, the maximum bandwidth in Wi-Fi 7 was increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit. The IEEE 802.11be standard uses 4096-QAM modulation, which also allows more symbols to be accommodated in a data transmission unit. From Wi-Fi 7 you can squeeze out a maximum theoretical information exchange rate of up to 46 Gbps. In the context of using wireless connections for streaming and video games, the implemented MLO (Multi-Link Operation) development seems very interesting. With its help, you can aggregate several channels in different ranges, which significantly reduces delays in data transmission and ensures low and stable ping. And Multi-RU (Multiple Resource Unit) technology is designed to minimize communication delays when there are many connected client devices.

Bluetooth

The motherboard has its own Bluetooth module, which eliminates the need to purchase such an adapter separately. Bluetooth technology is used for direct wireless connection of a computer with other devices — mobile phones, players, tablets, laptops, wireless headphones, etc.; connectivity options include both file sharing and external device control. The Bluetooth connection range is up to 10 m (in later standards — up to 100 m), while the devices do not have to be in the line of sight. Different versions of Bluetooth (at the end of 2021, the latest of which is Bluetooth v 5) are mutually compatible in terms of basic functionality and have all sorts of differences.

LAN (RJ-45)

The type of LAN interface provided in the design of the motherboard. LAN (also known as RJ-45 and Ethernet) — a standard connector for wired connection to computer networks; can be used for both local and Internet. The type of such a connector is indicated by the maximum speed. Note that nowadays, even inexpensive "motherboards" are usually equipped with fairly fast LAN adapters — at least gigabit ones. The meaning of such characteristics is not only (and often not so much) to speed up the transfer of large amounts of data, but also to reduce lags in the network connection. This can be important for tasks that require good responsiveness or precise synchronization, such as online games.

1 Gbps. The standard used in the vast majority of desktop (non-server) motherboards. On the one hand, it provides more than a decent connection speed, sufficient even for large amounts of information; on the other hand, it is inexpensive and can be installed even in the simplest low-cost motherboards.

2.5 Gbps. An improved version of the gigabit standard, it is also a simplified and somewhat cheaper version of the 5-gigabit standard. It is found in separate "motherboards" for gaming purposes.

5 Gbps. A kind of transitional option between a relatively simple gigabit LAN (see above) and an advanced 10-gigabit LAN (see below). Found in some gaming motherboards....This standard costs less than the 10-gigabit one, while the communication speed still turns out to be quite decent, and the lags are low.

10 Gbps. Such a data transfer rate is indispensable for large volumes of information; in addition, it provides a high speed of passing individual data blocks, which is important for reducing lags in online games. At the same time, this interface appeared relatively recently and is not cheap. Therefore, it is mainly used in top-end "motherboards" for gaming and server purposes (see "In the direction").

— 100 Mbps. A very popular standard in its time, which is now considered obsolete in light of the spread of faster versions of the LAN. It is extremely rare, mainly in separate low-cost boards.
Asus ROG STRIX X570-E Gaming often compared
Asus ROG STRIX X570-F Gaming often compared