Dark mode
USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison ASRock B450 Steel Legend vs ASRock B450 Pro4

Add to comparison
ASRock B450 Steel Legend
ASRock B450 Pro4
ASRock B450 Steel LegendASRock B450 Pro4
Compare prices 1Compare prices 1
User reviews
0
0
12
0
0
23
TOP sellers
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factorATXATX
Power phases69
VRM heatsink
LED lighting
Lighting syncASRock Polychrome Sync
Size (HxW)305x224 mm305x224 mm
Chipset
ChipsetAMD B450AMD B450
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency3533 MHz3200 MHz
Max. memory128 GB64 GB
XMP
Drive interface
SATA 3 (6Gbps)66
M.2 connector22
M.21xSATA/PCI-E 2x, 1xPCI-E 4x1xSATA/PCI-E 2x, 1xPCI-E 4x
M.2 SSD cooling
Integrated RAID controller
Expansion slots
1x PCI-E slots44
PCI-E 16x slots22
PCI Modes16x/4x16x/4x
PCI Express3.03.0
CrossFire (AMD)
Steel PCI-E connectors
Internal connections
TPM connector
USB 2.022
USB 3.2 gen111
ARGB LED strip11
RGB LED strip11
More featuresCOM PortCOM Port, AMD Fan LED
Video outputs
D-Sub output (VGA)
HDMI output
DisplayPort
DisplayPort versionv.1.2
Integrated audio
AudiochipRealtek ALC892Realtek ALC892
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111H
External connections
USB 2.022
USB 3.2 gen144
USB 3.2 gen211
USB C 3.2 gen211
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors55
CPU Fan 4-pin11
CPU/Water Pump Fan 4-pin11
Chassis/Water Pump Fan 4-pin33
Added to E-Catalogjanuary 2019july 2018

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

LED lighting

The presence of its own LED backlight on the motherboard. This feature does not affect the functionality of the "motherboard", but gives it an unusual appearance. Therefore, it hardly makes sense for an ordinary user to specifically look for such a model (a motherboard without backlighting is enough for him), but for modding lovers, backlighting can be very useful.

LED backlighting can take the form of individual lights or LED strips, come in different colours (sometimes with a choice of colours) and support additional effects — flashing, flickering, synchronization with other components (see "Lightning synchronization"), etc. Specific features depend on the motherboard model.

Lighting sync

Synchronization technology provided in the board with LED backlight (see above).

Synchronization itself allows you to "match" the backlight of the motherboard with the backlight of other system components — cases, video cards, keyboards, mice, etc. Thanks to this matching, all components can change colour synchronously, turn on / off at the same time, etc. Specific features the operation of such backlighting depends on the synchronization technology used, and, usually, each manufacturer has its own (Mystic Light Sync for MSI, RGB Fusion for Gigabyte, etc.). The compatibility of the components also depends on this: they must all support the same technology. So the easiest way to achieve backlight compatibility is to collect components from the same manufacturer.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.

Max. memory

The maximum amount of RAM that can be installed on the motherboard.

When choosing according to this parameter, it is important to take into account the planned use of the PC and the real needs of the user. So, volumes up to 32 GB inclusive are quite enough to solve any basic problems and run games comfortably, but without a significant reserve for an upgrade. 64 GB is the optimal option for many professional use cases, and for the most resource-intensive tasks like 3D rendering, 96 GB or even 128 GB of memory will not be a limit. The most “capacious” motherboards are compatible with volumes of 192 GB or more - they are mainly top-end solutions for servers and HEDT (see “In the direction”).

You can choose this parameter with a reserve – taking into account a potential RAM upgrade, because installing additional RAM sticks is the simplest way to increase system performance. Taking this factor into account, many relatively simple motherboards support very significant amounts of RAM.

M.2 SSD cooling

Motherboard-integrated cooling for M.2 SSD drives.

This connector allows you to achieve high speed, however, for the same reason, many M.2 SSDs have high heat dissipation, and additional cooling may be required to avoid overheating. Most often, the simplest radiator in the form of a metal plate is responsible for such cooling — in the case of an SSD, this is quite enough.

Steel PCI-E connectors

The presence of reinforced steel PCI-E connectors on the "motherboard".

Such connectors are found mainly in gaming (see "In the direction") and other advanced varieties of motherboards, designed to use powerful graphics adapters. Steel slots are usually made PCI-E 16x, just designed for such video cards; in addition to the slot itself, its attachment to the board also has a reinforced design.

This feature offers two key advantages over traditional plastic connectors. Firstly, it allows you to install even large and heavy video cards as reliably as possible, without the risk of damaging the slot or board. Secondly, the metal connector plays the role of a protective screen and reduces the likelihood of interference; this is especially useful when using multiple video cards installed side by side.

D-Sub output (VGA)

The motherboard has its own D-Sub (VGA) output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for VGA specifically, it is an analogue standard originally created for CRT monitors. It does not differ in image quality, is practically not suitable for resolutions above 1280x1024 and does not provide sound transmission, and therefore is generally considered obsolete. However, this type of input continues to be used in some monitors, TVs, projectors, etc.; so among motherboards you can find models with such outputs.

DisplayPort version

The version of the DisplayPort interface (see above) installed on the motherboard.

— v.1.2. The oldest version in use today (2010). It was in it that 3D support first appeared, the ability to work with the miniDisplayPort connector, as well as the option of connecting several screens in series to one port (daisy chain). The maximum resolution fully supported by v.1.2 is 5K at 30 fps, with some limitations, 8K video is also supported. And the v.1.2a update, introduced in 2013, added compatibility with the FreeSync technology used in AMD graphics cards.

— v.1.3. An update to the DisplayPort standard released in 2014. Thanks to the increase in bandwidth, it was possible to provide full support for 8K video (at 30 fps), and in 4K and 5K standards, increase the maximum frame rate to 120 and 60 fps, respectively. Another key update was the Dual-mode function, which provides compatibility with HDMI and DVI interfaces through the simplest passive adapters.

— v.1.4. The most recent version of the widely used. The bandwidth has been further increased (almost doubled compared to v.1.2, which allowed, albeit with some limitations, to transmit 4K and 5K video at up to 240 fps and 8K at up to 144 fps. In addition, Support for a number of special features has been added, including HDR10, and the maximum number of simultaneously transmitted audio channels has increased to 32.
ASRock B450 Steel Legend often compared
ASRock B450 Pro4 often compared