Dark mode
USA
Catalog   /   Computing   /   Desktop PCs

Comparison ETE GAME CASUAL vs Vinga Sky T90E5I51U0VN

Add to comparison
ETE GAME (CASUAL)
Vinga Sky (T90E5I51U0VN)
ETE GAME CASUALVinga Sky T90E5I51U0VN
Outdated ProductOutdated Product
TOP sellers
Main
Product typedesktopdesktop
Form factorMidi TowerMidi Tower
CPU
ChipsetIntel H310Intel H310
Typedesktopdesktop
SeriesCore i3Core i3
Model9100F8100
Cores44
Threads44
Speed3.6 GHz3.6 GHz
TurboBoost / TurboCore4.2 GHz
Memory
RAM8 GB8 GB
Memory typeDDR4DDR4
Speed2400 MHz2400 MHz
Number of slots22
Max. memory support32 GB32 GB
Graphics card
Graphics card typededicateddedicated
Graphics card modelGeForce GTX 1650GeForce GTX 1050 Ti
Graphics memory4 GB4 GB
Memory typeGDDR5GDDR5
VR
3DMark2349 score(s)
Passmark G3D Mark6405 score(s)
Storage
Drive typeHDDHDD+SSD
Drive capacity1000 GB1000 GB
2nd drive capacity120 GB
Internal 3.5" compartments2
Internal 2.5" compartments2
Back panel
Connectors
 
 
 
 
VGA
DVI
HDMI output
DisplayPort
PS/21
USB 2.04
USB 3.2 gen22
Front Panel
Optical driveis absentis absent
5.25" compartments11
mini-Jack (3.5 mm)
USB 2.022
USB 3.2 gen11
Multimedia
LAN (RJ-45)1 Gbps1 Gbps
Wi-Fiis absentis absent
Sound7.17.1
General
PSU power500 W500 W
Preinstalled OSno OSno OS
Materialsteelsteel
Dimensions (HxWxD)410x180x360 mm
Color
Added to E-Catalogjanuary 2020april 2019

Model

The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.

TurboBoost / TurboCore

Processor clock speed when running in TurboBoost or TurboCore mode.

Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.

Graphics card model

The main manufacturers of video cards nowadays are AMD, NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are the GeForce MX1xx, GeForce MX3xx, GeForce GTX 10xx series (in particular GTX 1050, GTX 1050 Ti and GTX 1060), GeForce GTX 16xx, GeForce RTX 20xx, GeForce RTX 30xx( GeForce RTX 3060, GeForce RTX 3060 Ti, GeForce RTX 3070, GeForce RTX 3070 Ti, GeForce RTX 3080, GeForce RTX 3080 Ti, GeForce RTX 3090, GeForce RTX 3090 Ti), GeForce RTX 4060 , GeForce RTX 4060 Ti, GeForce RTX 4070, GeForce RTX 4070 SUPER, GeForce RTX 4070 Ti, GeForce RTX 4070 Ti SUPER, Ge Force RTX 4080, GeForce RTX 4080 SUPER, GeForce RTX 4090 and separate Quadro series. AMD offers both discrete and integrated graphics - including the popular Radeon RX 500, Radeon RX 5000, Radeon RX 6000, Radeon RX 7000 and AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.

Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.

VR

Support for virtual reality technologies by a PC graphics card, in other words, the ability to use VR glasses and helmets with a computer. Such equipment gives a powerful effect of immersion in what is happening — the image in front of the eyes changes when the head moves, as if the user is looking at it live. However, processing such graphics requires high performance, as well as support for some special technologies. So if you intend to use VR, you should choose a system for which this feature is directly stated.

VR support is found primarily in professional gaming PCs, but it can also be useful for developers involved in VR applications.

3DMark

The result shown by the PC graphics card in the 3DMark test (benchmark).

3DMark is a specialized test designed primarily to test the performance and stability of a graphics card in demanding games. The verification is carried out by running 3D videos created on various game engines using various technologies. The final result is evaluated both in terms of frame rate and in conditional points; in this paragraph, just the number of points is given. The higher it is, the more powerful and performant the graphics card is.

Note that 3DMark testing can be carried out for any type of graphics (see "Graphics card type"). At the same time (as of 2020) in integrated solutions, the final result rarely exceeds 1000 points; the most modest indicator for discrete adapters is about 1700 points; and in some high-end graphics cards, it can exceed 10,000 points.

Passmark G3D Mark

The result shown by the PC graphics card in the test (benchmark) Passmark G3D Mark.

Passmark G3D Mark is a comprehensive test to check the performance of a graphics card in various modes. Traditionally for such tests results are displayed in points, more points mean (proportionately) higher computing power. However, note that the graphics card is tested in different modes, and the final score is derived based on several results in specialized tests. Therefore, adapters with a similar overall result may differ slightly in actual performance in certain specific formats of operation. So if a PC is purchased for professional work with graphics, and high efficiency in some specialized tasks is critical, it will not hurt to clarify these nuances separately.

Note that with the help of Passmark G3D Mark, nowadays, all types of graphics adapters are tested (see "Graphics card type"). At the same time, for integrated solutions, a result of more than 1200 points is considered very good, and in discrete models this figure can vary from 2200 – 2300 points to 20,000 points or more.

Drive type

The type of storage device that is installed in the computer.

Note that many PCs allow you to add a complete drive or even completely replace it, but it is more convenient to buy a suitable configuration initially and not bother with re-equipment. In terms of types, traditional hard disk drives ( HDD) are increasingly losing ground to SSD solid-state modules nowadays. In addition, HDD + SSD combinations are quite popular (including those using advanced Intel Optane and Fusion Drive technologies). But solutions such as SSHD and eMMC have practically fallen into disuse. Let's take a closer look at these options:

— HDD. Classic hard disk. The key advantage of such drives is their low cost per unit of volume — this allows you to create capacious and at the same time inexpensive storage. On the other hand, HDDs are noticeably inferior to SSDs in terms of speed, and they also do not tolerate shocks and shocks. Thus, this type of media is less and less used in its pure form — it is much more common to find a combination of a hard drive with an SSD module (see below).

— SSD. Solid state drives based on flash memory. With the same volume, an SSD is much more expensive than an HDD, but this is justified by a number of advantages. First, such drives are much faster than hard drives; specif...ic performance may be different (depending on the type of memory, connection interface, etc.), however, even inexpensive SSDs outperform advanced HDDs in this indicator. Secondly, solid-state memory has no moving parts, which offers several advantages at once: lightness, compactness, shock insensitivity and low power consumption. And the cost of such memory is constantly decreasing as technology advances. So more and more modern PCs are equipped with just such drives, and these can be configurations of any level — from low-cost to top ones.

— HDD+SSD. The presence in one system of two drives at once — HDD and SSD. Each of these varieties is described in more detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. For example, an SSD (which usually has a fairly small capacity) can store system files and other data for which speed of access is important (for example, work applications); and HDD is well suited for large volumes of information that do not require particularly high speed (a typical case is video files and other multimedia content). In addition, the solid-state module can be used not as a separate storage, but as an intermediate cache to speed up the hard drive; however, this usually requires special software settings (whereas the "two separate drives" mode is most often available by default).
We also emphasize that in this case we are talking about “ordinary” SSD modules that do not belong to the Optane and Fusion Drive series; the features of these series are detailed below.

HDD + Optane. Combination of a traditional hard drive with an Intel Optane series SSD. For more information about the general features of this combination, see "HDD + SSD" above. Here, we note that “optains” differ from other SSD drives in a special three-dimensional structure of memory cells (3D Xpoint technology). This allows you to access data at the level of individual cells and do without some additional operations, which speeds up the speed and reduces latency, and also has a positive effect on memory life. The second difference is that Optane is usually used not as a separate drive, but as an auxiliary buffer (cache) for the main hard drive, designed to increase speed. Both drives are perceived by the system as a single device. The disadvantage of this type of SSD is traditional — a rather high cost; it is also worth noting that its superiority is most noticeable at relatively low loads (although it does not disappear completely with increasing load).

— HDD + Fusion Drive. A kind of HDD + SSD bundle (see above), used exclusively in Apple computers and optimized for the proprietary macOS operating system. However, it would be more correct to compare this option with the “HDD + Optane” combination (also described above): for example, both drives are perceived by the system as a single unit, and the Fusion Drive module is also used as a high-speed cache for the hard drive. However, there are also significant differences. Firstly, Fusion Drive has significant volumes and is used not only as a service buffer, but also as part of a full-fledged drive — for permanent data storage. Secondly, the total volume of the entire bundle approximately corresponds to the sum of the volumes of both drives (minus a couple of "service" gigabytes). This type of drive is expensive, but the efficiency and convenience are well worth the price.

— SSHD. The so-called hybrid drive: a device that combines a hard drive and a small SSD cache in one case. Some time ago, this solution was quite popular, but now it is almost never found, having been supplanted by a more practical option — various types of HDD + SSD.

— eMMC. A type of solid-state memory originally developed for portable gadgets such as smartphones and tablets. It differs from SSD, on the one hand, in lower cost and low power consumption, on the other hand, in relatively low speed and reliability. Because of this, this type of drive is used extremely rarely — in particular, in single models of microcomputers and thin clients (see "Type").

— HDD + eMMC. Combination of hard disk drive (HDD) and eMMC solid state module. These types of drives are described in detail above; here we note that this option is extremely rare, and in rather specific devices — monoblocks (see "Type") with a transformer function, where the screen is a removable tablet that can be used autonomously. In such a tablet, an eMMC module is usually installed, and a hard drive is placed in the stationary part. However, another option is also possible — a bundle similar to HDD + SSD (see above), where eMMC is used to reduce cost and/or power consumption.

— SSD + eMMC. Another combination of the two types of drives described above. It was used in single monoblocks and nettops — mainly to reduce the cost; Today, this variant is almost non-existent.

2nd drive capacity

The capacity of the optional storage installed in the PC.

This parameter is relevant primarily for configurations with different types of media. So, in HDD + SSD and HDD + eMMC bundles, the hard drive is considered the main drive, and this paragraph indicates the capacity of the solid-state module. In SSD + eMMC configurations, eMMC is considered the second drive — less capacious and performing an auxiliary function. There are PC models with two hard drives, but in such cases, the drives usually have the same volume, and it does not matter for them which one is considered the main one.

If we talk about specific numbers, then the volume up to 128 GB can be considered relatively small, and 128 GB or more is solid. For more information on volumes in general, see "Drive Capacity" above.

Internal 3.5" compartments

The number of internal 3.5" component bays in the computer. This form factor is standard for hard drives, and is also often used in other types of drives; accordingly, the more bays, the more drives you can install on your computer.

Paying attention to the number of internal 3.5" bays makes sense, first of all, if you purchase a configuration without drives or plan to upgrade your PC in the future. It is worth noting that it is recommended to install drives not in a row, but through one slot — for cooling efficiency ; so ideally the number of slots should be twice the number of devices to be installed.