USA
Catalog   /   Computing   /   Multimedia   /   PC Speakers

Comparison Edifier R980T vs Microlab B-73

Add to comparison
Edifier R980T
Microlab B-73
Edifier R980TMicrolab B-73
Compare prices 8
from $60.12 up to $64.24
Outdated Product
TOP sellers
Speakerskit 2.0kit 2.0
Lines22
Specs
Signal-to-noise ratio85 dB60 dB
Frequency range70 – 20000 Hz60 – 20000 Hz
Impedance6 Ohm
Speaker output24 W20 W
Front12 W/channel10 W/channel
Speaker port tube
Features
Functions
bass control
bass control
Connections
RCA /two pairs/
RCA /two pairs/
General
Detachable cablesoundsound
Volume controlrearrear
Speaker materialMDFMDF
Front speaker size (WxHxD)140x226x197 mm161х245х202 mm
Weight4.75 kg7 kg
Color
Added to E-Catalogjanuary 2014august 2006

Signal-to-noise ratio

The ratio of the level of the useful signal (actually reproduced sound) to the level of extraneous noise provided by the speaker amplifier in normal mode.

Any amplifier inevitably creates its own noise; You can't get rid of them, but you can reduce their level. The higher the signal-to-noise ratio, the clearer the sound will be, the less noticeable extraneous interference will be. In modern computer speakers, this figure can vary from 52 – 55 dB (the minimum figure so that the noise does not cause much discomfort) to 90 – 95 dB (comparable to fairly advanced Hi-Fi equipment). However, note that the signal-to-noise ratio is far from the only parameter that affects the sound quality, and its high value does not guarantee a pleasant sound from the speakers.

Frequency range

The range of audio frequencies supported by acoustics. The wider this range — the fuller the reproduced sound, the lower the likelihood that some of these details at low or high frequencies will remain “behind the scenes”. At the same time, the human ear is able to hear frequencies of the order of 16 – 22,000 Hz, and with age, this range narrows even more. In modern audio equipment, especially at the top level, there may be more extensive ranges, but from a practical point of view, this does not make much sense. In addition, it is worth noting that a wide frequency range in itself does not guarantee high-quality sound — a lot also depends on the frequency response.

Impedance

The electrical resistance of the speakers to alternating current. This parameter is important primarily for normal compatibility with the amplifier: too low speaker impedance can lead to distortion, overload, and even damage to the speakers, and too high impedance can reduce the sound volume. At the same time, the vast majority of modern computer acoustics have their own amplifiers and are connected via a line input. Therefore, the impedance data is more of a reference value; in fact, this indicator may be needed only when connecting speakers to a “non-native” power amplifier, bypassing the standard one.

Speaker output

Total speaker power rating — the sum of the power ratings of all components (front, rear, centre, etc.)

Rated usually means the highest average sound power that the speakers can produce without overloading and damage. Individual peaks of sound can significantly exceed this figure, but it is the average value that is key — in particular, it is it that determines the overall loudness of the acoustics. However it should be borne in mind here that in sets with a subwoofer, the latter can account for about half of the total power of the entire system, while the actual volume is determined mainly by the main speakers. In fact, this means that with equal total power, acoustics with a subwoofer can sound noticeably quieter than a model without a subwoofer: for example, a 2.0 system at 20 W will have 10 W per main channel, while in a 2.1 model at 20 W with 10- watt subwoofer on the main speakers will have only 5 watts.

As for specific values, in the quietest modern PC speakers, the power does not exceed 10 watts. An indicator of 10 – 25 W can be called relatively modest, 25 – 50 W — average, and values of 50 – 100 W and above are found mainly in sets with subwoofers, where a significant part of the power falls on the bass speaker (although there are also ordinary stereo speakers with similar features)....

Theoretically, the power of acoustics also affects its compatibility with a specific amplifier: speakers should not be inferior to it in terms of rated power, otherwise sound distortion and even equipment damage are possible. However, computer acoustics in the vast majority of cases are used with their own amplifiers, optimally matched to the speakers installed in the speakers. So this moment becomes relevant only in some very specific cases — for example, when replacing a complete external amplifier (see below) with another one.

Front

The power rating of each individual front speaker provided in the speaker system. This parameter can be specified for a system with any number of speakers (see above) — all sound formats used in computer acoustics provide a pair of front speakers.

In the most general terms, the higher the power, the louder the speaker is capable of sounding. For more information about this parameter, see "Total power" above. Also note here that for stereo systems without a subwoofer, the power of one front channel is half of the total power; in more advanced acoustics, the power ratio between the channels may be different.

Speaker port tube

A phase inverter is a tube of a special design that connects the inner volume of the speaker housing with the outer space. Due to the precisely selected length, such a tube improves the sound of low frequencies, making it more saturated and uniform. The main disadvantage of a phase inverter is that a hum may occur due to the movement of air in the tube; however, manufacturers design speakers in such a way as to minimize the likelihood of this phenomenon.

Note that the presence of a phase inverter is especially useful for subwoofers, but this feature can also be found in general-purpose stereo speakers — for the same reasons.
Edifier R980T often compared
Microlab B-73 often compared