USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison OnePlus 7T Pro 5G McLaren 256 GB / 12 GB vs OnePlus 7T Pro 256 GB / 8 GB

Add to comparison
OnePlus 7T Pro 5G McLaren 256 GB / 12 GB
OnePlus 7T Pro 256 GB / 8 GB
OnePlus 7T Pro 5G McLaren 256 GB / 12 GBOnePlus 7T Pro 256 GB / 8 GB
Compare prices 1
from $549.00 
Expecting restock
TOP sellers
Main
An advanced version of the 7T Pro with McLaren design. Frameless display. Fingerprint scanner built into the display. Corning Gorilla Glass 6. High capacity battery (4085 mAh). Display frequency up to 90Hz. Retractable front camera. NFC. fast charging
Frameless display. Fingerprint scanner built into the display. Corning Gorilla Glass 6. High capacity battery (4085 mAh). Display frequency up to 90Hz. Retractable front camera. NFC. Fast charging.
Display
Main display
6.67 "
3120x1440 (19.5:9)
516 ppi
Super AMOLED /Fluid AMOLED/
90 Hz
HDR10+
rounded screen edges
Gorilla Glass v6
6.67 "
3120x1440 (19.5:9)
516 ppi
Super AMOLED /Fluid AMOLED/
90 Hz
HDR10+
rounded screen edges
Gorilla Glass v6
Display-to-body ratio88 %
Hardware
Operating systemAndroid 10.0Android 10.0
CPU modelQualcomm SDM855 Snapdragon 855+Qualcomm SDM855 Snapdragon 855+
CPU frequency2.96 GHz2.96 GHz
CPU cores88
GPUAdreno 640Adreno 640
RAM12 GB8 GB
RAM typeLPDDR4xLPDDR4x
Memory storage256 GB256 GB
Storage typeUFS 3.0UFS 3.0
Memory card slotabsentabsent
Liquid cooling
SIM slots2 SIM2 SIM
SIM card typenano-SIMnano-SIM
Test results
AnTuTu Benchmark482122 score(s)482415 score(s)
Sling Shot Extreme (OpenGL ES 3.1 / METAL)6158 score6158 score
Main camera
Lenses3 modules3 modules
Main lens
48 MP
f/1.6
 
48 MP
f/1.6
Sony IMX586, 1/2"
Ultra wide lens
16 MP
f/2.2
 
 
16 MP
f/2.2
13 mm
117 °
Telephoto lens
8 MP
f/2.4
8 MP
f/2.4
Full HD (1080p)
60 fps /240 fps in slow motion/
60 fps /240 fps in slow motion/
Slow motion (slow-mo)
960 fps /720р/
960 fps /720р/
4K60 fps60 fps
Flash
DxOMark test (camera)114 score
Front camera
Form factorpop-uppop-up
Main selfie lens16 MP16 MP
Aperturef/2.0f/2.0
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
5G / 4G (LTE) / 3G / GSM
CDMA
4G (LTE)
CDMA
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
aptX HD
NFC
DLNA support
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
aptX HD
NFC
DLNA support
Inputs & outputs
USB C 3.2 gen2
USB C 3.2 gen2
Features and navigation
Features
in-display fingerprint scanner
Google AR Core
noise cancellation
gyroscope
flashlight
light sensor
in-display fingerprint scanner
Google AR Core
noise cancellation
gyroscope
flashlight
light sensor
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity4085 mAh4085 mAh
Battery life (PCMark)9 h
Fast chargingOnePlus Warp ChargeOnePlus Warp Charge
Charger power30 W30 W
Wireless charging
General
Bezel/back cover material
metal/glass Gorilla Glass /v5/
metal/glass Gorilla Glass /v5/
Back coverglossyglossy
Dimensions (HxWxD)162.6x75.9x8.8 mm162.6x75.9x8.8 mm
Weight206 g206 g
Color
Added to E-Catalogoctober 2019september 2019

Display-to-body ratio

The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.

This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a thin bezel, and more than 90 % — about a “bezel less” design.

Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by the device when passing the AnTuTu Benchmark performance test.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It checks the efficiency of the processor, memory, graphics and I/O systems, thus providing a fairly visual impression of the capabilities of the system. The better the result, the more points are given at the end. And high-performance by AnTuTu rating are smartphones that score over 750K points

Like any benchmark, this test does not give absolute accuracy: the same device can show different results, usually with deviations within 5 – 7%. These deviations depend on many factors that are not directly related to the system — from the load of the device with third-party programs to the air temperature during testing. So, it is possible to speak about a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

Ultra wide lens

Specs of the ultra wide-angle lens of the main camera installed in the phone.

These details are relevant only for cameras with several lenses (see "Number of lenses") — and not all, but only those where there is a lens with a small focal length (much less than in the main lens) and, accordingly, wider viewing angles. It is called ultra-wide. In the same paragraph, four main parameters can be indicated: resolution, aperture ratio, focal length and additional sensor data.

Resolution(in megapixels, MP)
The resolution of the sensor used for the ultra-wide lens.

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture" allows you to capture small details better. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality — due to the smaller size of each individual pixel, the noise level increases. As a result, the direct resolution of the camera has little effect on the quality of photos and videos — a lot also depends on the size of the sensor, the features of the optics and various design tricks used by the manufacturer. At the same time, we note that the more megapixels a camera has, the more likely it is to implement various additional solutions aimed at improving image quality.

As for the specific resolution of ultra-wide optics, it can co...rrespond to the number of megapixels in the main lens (see "Main lens") or be lower, sometimes quite noticeable (for example, 8 MP with the main optics at 48 MP). This is due to the fact that an ultra-wide-angle lens often plays a secondary role, for which a small resolution is more than enough.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, that is, for example, an f/2.6 lens will transmit less light than f/1.9.

High aperture gives the camera a number of advantages: it allows you to shoot at low shutter speeds, minimizing the likelihood of “shake”, and also makes it easier to shoot in low light and shoot with artistic background blur (bokeh). However, for an ultra-wide lens, such features are not as important as for the main camera — such lenses usually have a specific purpose, and their small aperture is often more desirable, which allows you to increase the depth of field. So in general, this parameter is more of a reference than practically significant when choosing.

Focal length
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the sensor. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles).

Anyway, the viewing angle and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller viewing angle and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. Ultra-wide optics, by definition, must have very short focal lengths — smaller than the corresponding main optics. However, "ultra-wide" focal lengths typically range from 13 mm to 26 mm; such values are not rare among the main lenses. At the same time, there is nothing illogical here — the point is the ratio of focal lengths in each individual smartphone. For example, a camera with a 25mm primary lens can carry a 16mm or 17mm ultra-wide lens; and models with a primary lens less than 24mm usually do not have additional ultra-wide optics at all, since the existing lens perfectly plays this role just fine. Also note that the difference between these types of optics is not as significant as one might imagine; and in some devices, both focal lengths are generally the same, while the difference in specialization is achieved due to the features of image processing in each lens.

Field of view(in degrees) It is the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this angle, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, the field of view data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras in this way. As for specific values, ultra-wide-angle optics, by definition, have very wide angles — from 107° and above; in some models, this figure reaches 125°.

Additional Sensor Data
Additional information regarding the sensor installed in the ultra-wide lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-class sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/3.1" sensor will be larger than 1/4". Larger sensors are considered more advanced, as they provide a better image at the same resolution. This is due to the fact that due to the larger sensor area, each individual pixel is also larger and receives more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. However, in ultra-wide lenses, the sensors are generally noticeably smaller than in the main ones — for example, the mentioned 1/3.1" and 1/4" are quite common options. This is primarily due to the secondary role of such cameras.

DxOMark test (camera)

The result shown by the main camera of the smartphone in the DxOMark ranking.

DxOMark is one of the most popular and respected resources dedicated to expert testing of cameras, including smartphones. According to the test results, the camera receives a certain number of points; The more points, the higher the final score. The DxOMark top in our catalog includes devices that score at least 108 points; and a score of more than 120 points allows us to consider the camera a high-end one, even if the device does not formally belong to “camera phones”.

Cellular technology

Communication standards supported by the mobile phone. In the modern world, several standards related to different generations are actively used: GSM, 3G, 4G (LTE)(with or without VoLTE), 5G (including fast mobile internet), CDMA. They vary in both specs and prevalence in different countries:

— GSM. The earliest of the communication standards found in modern telephones. Belongs to the second generation (2G). Allows you to make voice calls with acceptable sound quality, as well as transfer data at speeds up to 474 Kbps (using EDGE technology). Nowadays, GSM is considered completely obsolete, it has been almost universally replaced by more advanced standards of the next generations (3G, 4G, etc.). However, 2G support is found in most modern devices — not so much because of practical necessity, but because of technical features. The fact is that almost all communication standards that are relevant nowadays are add-ons over GSM, and modules for working with these standards are almost guaranteed to be compatible with GSM as well.

— 3G. In a broad sense, the 3G category (third generation communications) includes several standards. However, in the east european mobile phone market, this term refers specifically to the connection of the UMTS format. This standard is a development of GSM, such networks are often deployed on the...basis of ready-made networks of the 2nd generation and can also serve GSM phones without problems. Specifically, UMTS provides data transfer rates from 2 to 70 Mbps, depending on additional technologies implemented by a particular operator. This is already comparable to fixed Internet access; so, despite the spread of newer standards, 3G communication and phones for it are still quite popular — especially since such devices are compatible with 4G and 5G networks.

— 4G (LTE). Communication 4 generations based on the LTE standard; other 4G standards are not used in mobile phones. LTE is a further development of 3G (UMTS), deployed on the basis of the same technical base, but operates at higher speeds — up to 173 Mbps, which is comparable to a full-fledged broadband Internet connection. LTE networks are commercially operated in many countries of the world, but not in all; therefore, before buying a 4G-compatible phone, it's a good idea to check if it will be possible to use all its features in your area. Also note that voice calling over LTE ("VoLTE") is a separate topic; see below for details.

— 5G. Further, after 4G, the development of mobile communication standards. In the official specifications of this generation, a peak speed of 20 Gbps for reception and 10 Gbps for transmission, guaranteed speed (at high network load) of 100 and 50 Mb/s, respectively, as well as a number of solutions aimed at improving reliability and overall connection quality. A set of such solutions includes, in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming) at base stations, as well as the possibility of direct communication between subscriber devices. With all this, this standard allows to reduce energy consumption in comparison with its predecessors.
Separately, it is worth mentioning the rumors about the dangers of 5G communications for health. According to modern scientific data, such a connection does not pose a danger to the human body, and the rumors mentioned are conspiracy theories that are not supported by any weighty arguments.

— VoLTE. VoLTE is not a separate communication standard, but a technology used in devices with 4G LTE support (see above). The name of this feature stands for "Voice over LTE", which corresponds to its main specifics. The fact is that initially the LTE standard was created for data transmission (in other words, Internet access) and did not support classical voice communication in mobile networks; this format of operation is still found in some models of 4G phones. To remedy the situation, VoLTE technology was created. It allows you to use all the capabilities of 4th generation networks when talking on the phone, providing very clear and high-quality sound transmission. So if you plan to frequently use voice calls in LTE networks, you should pay attention to devices with this feature.

— CDMA. CDMA networks are known to users primarily by the activities of cell phone networks that provide the opportunity to receive a mobile phone with a direct city number. At one time, these networks competed with GSM and more advanced standards based on it, but as mobile communications developed and became cheaper, CDMA operators for the most part curtailed their activities in the voice communications market and switched to mobile Internet access services. It is worth noting here that the EV-DO Rev.A and Rev.B data transmission technologies available in CDMA networks are capable of providing connection speeds at the level of third-generation networks (up to 3.1 Mbps in the first case and up to 14.7 Mbps in the second), so in some places these services were promoted under the 3G label. However, this connection should not be confused with UMTS-based 3G (see above) — these are two fundamentally different standards that are incompatible with each other. Roughly speaking, if we are talking about 3G in a mobile phone, usually, we mean UMTS, but 3G modems more often use CDMA (EV-DO).

It is worth noting that the GSM, 3G and 4G standards (in that order) are, in fact, stages in the development of mobile networks of the same type. In fact, this means that a phone with support for a later standard, by definition, supports earlier ones — for example, a device with LTE is able to work with both GSM and 3G.

You also need to remember that different ranges can be used within the same standard, and not all of them can be supported in a mobile device. However phones officially sold in a certain country are usually optimized for local networks, and there should be no problems with them. But if the device is planned to be imported from another country, and it was not intended for the local market, it makes sense to first clarify the compatibility by bands. Otherwise, a situation may arise when the device simply “does not see” the network, although formally it will be compatible with a certain communication standard.

Battery life (PCMark)

Because manufacturers claim a very conditional battery life (in an unknown mode, with unstated brightness indicators and phone settings) in the specs of their gadgets, which is more marketing and is not confirmed in reality, we decided to display a more accurate picture. The operating time indicated in this paragraph is the result of the PCMark Work 2.0 Battery Life benchmark, which evaluates energy efficiency in five work formats: web surfing, video viewing/editing, photo editing, working with text documents and working with data (extracting them from different file formats, building charts). These are the main tasks that a smartphone is supposed to perform in everyday life. And thanks to this testing format, the results very accurately correspond to the actual battery life of the gadget with active use during the day.
OnePlus 7T Pro 5G McLaren often compared
OnePlus 7T Pro often compared