USA
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison Oculus Go 32 Gb vs DJI Goggles

Add to comparison
Oculus Go 32 Gb
DJI Goggles
Oculus Go 32 GbDJI Goggles
Outdated ProductCompare prices 2
TOP sellers
Main
Oculus Go is a standalone VR headset that does not require connection to a computer or smartphone. Controller included. Spatial Sound Technology. 3D location tracking.
Viewing the picture from the camera on board the quadcopter in the first person. High resolution image. Controlling the camera by turning the head. Touchpad on the right side of the case.
Compatibilityindependent device
for quadcopter (FPV) /2x5"/
Specs
Screen resolution
2560x1440 px /1280x1440 by eye/
1920x1080 px /every screen/
Field of view100 °
85 ° /every screen/
Built-in memory32 GB
RAM3 GB
CPUSnapdragon 821
Refresh rate60 fps60 fps
Accelerometer
Gyroscope
Proximity sensor
Lens distance adjusting
Pupillary distance adjustment
Multimedia
Bluetoothv 4.0
Wi-FiWi-Fi 5 (802.11ac)
Headphones
Headphone output
General
Controlpush-button
Controller
 /for one hand/
Battery capacity2600 mAh
Materialplasticplastic
Dimensions (HxWxD)105x190x115 mm255x205x92 mm
Weight468 g500 g
Added to E-Catalogjanuary 2018september 2017

Compatibility

The general purpose of the glasses is specified based on which device they are to be used with:

For PC/Console. Glasses connected during operation to an external device and receiving a video signal from this device. Most often, it is supposed to be connected to a computer or game console, but there are models that can be connected to mobile gadgets, drones, etc. In general, they provide a good compromise between accessibility and functionality, and besides, quite advanced graphics can be displayed on such glasses. On the other hand, for the full use of such models, powerful video cards are often required.

For a smartphone. Models designed to turn a smartphone into a virtual reality device. To do this, the smartphone is installed in a special slot on the glasses so that its screen is turned towards the user's eyes; glasses themselves do not have screens. And the effect of virtual reality is achieved through the operation of smartphone sensors and (accelerometer, gyroscope) and the use of special applications created specifically for this format of work. The key advantage of glasses of this type is simplicity and low cost: most often these are purely mechanical devices, without built-in electronics (and even advanced models with additional hardware are much cheaper than other types of glasses). On the other hand, the quality of virtual reality directly depends on the capabilities o...f the smartphone, despite the fact that not all devices correctly process such content. In addition, the glasses must be compatible with the smartphone being used, and this is not always guaranteed (for more details, see “Maximum phone size”).

For quadcopter (FPV goggles). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Standalone device. Points that function completely autonomously and do not require the use of external devices. To do this, the design provides for its own processor, "RAM", video adapter, drive for storing content and a battery for power. Thus, with such a gadget, virtual reality becomes available literally anywhere in the world; and at a cost, such glasses are comparable to models for PC / consoles. On the other hand, the capabilities of stand-alone devices are noticeably more modest: the relatively low power of video adapters does not allow for the same advanced graphics as on PCs or consoles, the amount of internal memory is usually small, and the continuous operation time is limited by battery charge.

For quadcopter (FPV glasses). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Field of view

The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.

The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.

Built-in memory

The amount of built-in storage installed in glasses.

Only independent devices are equipped with such a drive (see "Intended use") — it is used to store software firmware, as well as various additional content (applications, panoramic films, etc.). The larger the storage capacity, the more such content can be stored on the device; on the other hand, this characteristic directly affects the price. It is also worth considering that some models allow you to supplement the built-in storage with a memory card (for more details, see "Cart Reader").

For modern virtual reality glasses, the most modest volume is 16 GB — it is technically impractical to install smaller drives. In advanced models, this figure can reach 128 GB.

RAM

The amount of random access memory (RAM) installed in glasses.

This parameter is relevant only for independent devices (see "Intended use"). Theoretically, the more RAM in the gadget, the higher its power, the faster it is able to work and the better it handles with “heavy” tasks. However, in fact, this characteristic has more reference than practical value. Firstly, the capabilities of standalone glasses are also highly dependent on the processor and video adapter used. Secondly, the amount of memory is selected in such a way that the glasses are guaranteed to be able to cope with the tasks for which they were originally intended. Actually, problems can only arise with the launch of very demanding applications or resource-intensive video (for example, 4K panoramic videos); so paying attention to the amount of RAM makes sense only if you plan to use glasses for such purposes.

As for specific volumes, they in modern devices range from 2 to 4 GB.

CPU

The model of the processor installed in the glasses.

This information is indicated mainly for stand-alone devices (see "Intended use") — it is in them that the capabilities of the glasses as a whole directly depend on the processor model. And knowing the name of the chip, you can find detailed data on it and evaluate its effectiveness. At the same time, in fact, such a need arises extremely rarely: manufacturers choose processors in such a way that glasses can be used for their main purpose without any problems. So when choosing, you should pay attention to more practical parameters — display resolution, refresh rate, etc.

Proximity sensor

The presence of a sensor in the glasses that reacts to approaching the user's face.

A similar sensor is used to automatically switch between operating and standby modes: for example, when the user takes off the glasses, the sensor turns off the built-in screens (or the phone, if it is connected to the glasses via a connector), saving battery power and equipment life, and when put on, it turns on points for full functionality.

Pupillary distance adjustment

The ability to adjust the interpupillary distance of glasses — that is, the distance between the centers of two lenses. To do this, the lenses are mounted on movable mounts that allow them to be moved to the right / left. The meaning of this feature is that for normal viewing, the centers of the lenses must be opposite the user's pupils — and for different people, the distance between the pupils is also different. Accordingly, this setting will be useful anyway, but it is especially important for users of a large or petite physique, whose interpupillary distance is noticeably different from the average.

At the same time, there is a fairly significant number of glasses that do not have this function. They can be divided into three categories. The first is devices where the lack of adjustment for the interpupillary distance is compensated in one way or another (for example, by a special form of lenses that does not require adjustment). The second is models where this adjustment is not needed in principle (in particular, some augmented reality glasses). And the third — the simplest and cheapest solutions, where additional adjustments were abandoned to reduce the cost.

Bluetooth

The presence of a Bluetooth module in the glasses; The Bluetooth version to which this module corresponds can also be specified here.

Bluetooth is a technology created for direct wireless connection between various devices. This technology is found in all types of VR glasses (see “Purpose”), although most models with its support are independent devices. In any case, the most popular way to use Bluetooth in virtual reality glasses is to broadcast sound wirelessly. Moreover, the format of such a broadcast may be different, depending on the specifics of the glasses themselves. Thus, standalone devices broadcast the reproduced sound to external headphones. Models for PCs and smartphones may have built-in headphones, and here the sound is transmitted via Bluetooth to the glasses from an external device; Audio from the built-in microphone can be transmitted in the opposite direction.

In addition, there are other possible ways to use Bluetooth, such as directly exchanging files with another device or connecting game controllers. Such capabilities are found exclusively in stand-alone glasses; the specific functionality for each model should be clarified separately.

As for the versions, the oldest one used in VR glasses today is Bluetooth 3.0, the newest is Bluetooth 5.0. However, the differences between different versions for such devices are not fundamental; this information is provided mainly for reference purposes.
Oculus Go 32 Gb often compared
DJI Goggles often compared