USA
Catalog   /   Sports & Outdoor   /   Activities & Electric Vehicles   /   Hoverboards & E-Unicycles

Comparison Smart Balance Wheel Premium 10.5 vs Ninebot Mini Pro

Add to comparison
Smart Balance Wheel Premium 10.5
Ninebot Mini Pro
Smart Balance Wheel Premium 10.5Ninebot Mini Pro
Outdated Product
from $949.99 
Outdated Product
TOP sellers
Main
It differs from the Ninebot Mini model in a more capacious battery and a powerful motor Self-balancing. LED headlights and marker lights. Theft blocking. Remote control.
Product typehoverboardhoverboard with handle
Max. load120 kg100 kg
Driving performance
Range20 km30 km
Max. speed20 km/h18 km/h
Wheel size10.5 "10.5 "
Max. climb angle15 °15 °
Clearance90 mm
Wheel materialrubberrubber
More features
position lamps
remote control
position lamps
remote control
Battery and motor
Battery capacity4400 mAh7100 mAh
Battery capacity158 W*h310 W*h
Voltage36 V54 V
Power
800 W /2х400 W/
800 W /2х400 W/
Number of motors22
Full charge time120 min180 min
General
Dustproof, waterproofIP54IP54
Dimensions700x350x335 mm546x262х595 mm
Weight12 kg12.8 kg
Color
Added to E-Catalogapril 2017march 2017

Product type

Hoverboard. Such a vehicle is a board with a pair of wheels (one at each end). The hardware of the hoverboard includes a balancing system that allows the rider to stand steadily on such a platform. The board itself is divided into two platforms, separately for each leg. The hoverboard is controlled by slightly tilting the platforms forward or backwards, while each of them controls its wheel, causing it to rotate in the appropriate direction. Thus, to go forward, you need to slightly tilt your legs on your toes; to go back tilt on your heels, and by tilting the platforms in different directions, you can even spin in place. Such equipment usually does not have a clearly defined front and back side; it drives the same way in any direction. Moving on a hoverboard requires certain skills and attentiveness, but it is not as difficult as it might seem at first glance. At the same time, the apparatuses themselves are quite light and compact — the dimensions of many models are comparable to not the largest skateboards.

Hoverboard with handle. A variety of self-balancing vehicles, colloquially called "segways" — by the name of the Segway company, which first introduced a successful model of such a vehicle to the market. By design, such vehicles are generally similar to the hoverboard described above — they have a platform for legs, two wheels and a balancing system. The key difference is primarily the...handle (steering column) mentioned in the title. It is vertical and is usually located in the middle of the platform, while its length can be different — most often it is supposed to hold on to the upper end of the handle with your hands, but there are also compact models where it is clamped between the knees. In addition, the hoverboard with handle may have a slightly different control method: the platform is often made in one piece, without dividing into halves for the left and right legs, and is only responsible for moving back and forth, while turns in such models are carried out by tilting the steering rack. Anyway, the handle provides additional support, making riding such a hoverboard somewhat easier and safer than a classic one (especially at high speeds). On the other hand, devices of this type are noticeably more expensive, heavier and more bulky than models without handles. As a result, if an ordinary hoverboard can be easily hidden in a backpack, then the hoverboard with handle will most likely have to be transported in the car boot.

— E-unicycle. Further development of the idea of self-balancing transport, units equipped with only one wheel — like unicycle bicycles, only with an electric drive. The wheel in such devices is covered with a case containing electronic and mechanical hardware; and foot platforms are located on both sides of the wheel, usually below the axle, and are often made foldable for compact storage and transportation. The design usually does not include a front/rear side. Maintaining balance on an e-unicycle is easier than on a unicycle bicycle, but it can be more difficult than on a hoverboard. Riding requires carefulness: hitting even a low obstacle can lead to a fall forward (the weaker the e-unicycle motors, the higher the likelihood of such an accident). However, the described points can also be perceived as advantages (or neutral features), and this vehicle also has its adherents, and the maximum speed of an e-unicycle can be quite high (although, of course, protective equipment is required for a safe ride).

Max. load

The maximum rider weight that the device can support (including the weight of a backpack, bag and other things carried on oneself; this is especially important to remember if the weight of the person himself is close to the maximum allowable). If the permissible load is exceeded, the transport not only loses efficiency but can also break down at any time. Therefore, it is impossible to ignore the prescriptions for weight anyway.

Range

The average distance that can be driven on a single battery charge. Usually, the range is indicated with some overestimation — based on a low (optimal from the point of view of energy consumption) speed, uniform movement on a flat surface, etc. Therefore, the actual battery life may be somewhat less. Nevertheless, this parameter is quite suitable for comparing different models with each other.
Thanks to the development of technology, the range in modern self-balancing vehicles can reach several tens of kilometers.

Max. speed

The maximum speed that the hoverboard is capable of reaching: on a flat surface, with a full battery charge and an average rider weight. The same parameter is also the maximum safe speed allowed when using this model; in theory, it is possible to accelerate even faster (for example, from a mountain), but this is fraught with breakdown, accident and injury, and therefore is not recommended at all.

Most modern models have a maximum speed of up to 20 km/h, and in “high-speed” vehicles this figure can exceed 30 km/h. Note that a fall from a hoverboard, even at a speed of 10 – 15 km/h, is fraught with serious injuries. Therefore, protective gear is highly recommended.

Clearance

Clearance is the distance from the lowest point of the hull to the ground; in other words, this is the largest size of an obstacle on the road (in height), that the device can pass under itself. High clearance contributes to cross-country ability. However, it requires large-diameter wheels and, accordingly, an increase in motor power, which in turn affects the weight and price of the device. In addition, self-stabilizing transport is designed primarily for urban use, with driving on a flat surface. Therefore, even in most models, the clearance does not exceed 150 mm, and in some devices, it is only 30 mm.

Battery capacity

Battery capacity of the device in milliamp-hours (mAh)

This parameter characterizes the amount of energy that the battery can store. The higher the number the more energy the battery stores, respectively, the greater the range (see above) and the more time it will take to charge. However, mAh is a popular, but not very reliable unit of power measurement: the actual amount of stored energy depends not only on the “milliamp hours”, but also on the battery voltage (and it can vary greatly in different models). The actual battery life strongly depends on the power consumption of the unit (determined primarily by engine power). This means that only models with similar performance characteristics and the same battery voltage can be compared with each other in this indicator. And when choosing, it’s easier to focus on more practical indicators — first of all, the range.

Battery capacity

The battery capacity of the device in watt-hours (Wh).

In general, capacity shows the amount of energy that a battery can store. The higher the number, the more energy the battery stores, respectively, the greater the range (see above) and the more time it will take to charge. Note that although watt-hours are used to designate power much less frequently than milliamp-hours (see above), this designation is more reliable, because when evaluating capacity, in this case, the battery voltage is also taken into account (as opposed to counting in mAh). This makes it easy to compare batteries of different voltages. At the same time, do not forget that the energy consumption of different models can also be different, and battery life is easier to evaluate by the directly claimed range.

Voltage

Rated voltage of the battery used to power the machine.

Usually, the more powerful the motors used, the higher the voltage: due to this, it is easier to provide the required battery power (see below). At the same time, this power depends not only on voltage. In addition, manufacturers choose batteries for the specific motor model used to provide the desired performance. Given all this, we can say that this parameter does not matter when choosing a transport. Voltage data may be useful only for battery repair/replacement, finding a charger and other similar tasks.

Full charge time

The time required to fully charge the battery from zero to full capacity. This parameter allows you to estimate how long the breaks should be for a full replenishment of the energy supply. Reducing the charging time makes the use of the device more convenient, but it is achieved through special technologies, which, usually, are not cheap.
Smart Balance Wheel Premium 10.5 often compared
Ninebot Mini Pro often compared