USA
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Laser Measuring Tools

Comparison Bosch UniversalLevel 2 0603663800 vs Skil LL0516 AD

Add to comparison
Bosch UniversalLevel 2 0603663800
Skil LL0516 AD
Bosch UniversalLevel 2 0603663800Skil LL0516 AD
Outdated Product
from $121.24
Outdated Product
TOP sellers
Typelaser levellaser level
Specs
Measurement range10 m10 m
Accuracy0.5 mm/m0.5 mm/m
Self-leveling angle4 °4 °
Leveling time4 sec6 sec
Operating temperature-5 – 40 °C-1 – 40 °C
Tripod thread1/4"1/4"
Laser characteristics
Diode emission650 nm635 nm
Laser colourredred
Laser class22
Vertical projections12
Beam angle (vertical)120 °
Horizontal projections11
Beam angle (horizontal)120 °
Point projections2
Zenith
Nadir
Features
Compensator locking
General
Power source3xAA4хАА
Operating time5 h15 h
In box
 
case / pouch
non-chargeable batteries
tripod
 
non-chargeable batteries
Dimensions125x64x115 mm97x65x120 mm
Weight460 g470 g
Added to E-Catalogoctober 2017april 2014

Leveling time

Approximate time it takes for the self-levelling mechanism to bring the level to a perfectly level position.

For more information on such a mechanism, see Self-Level Limits. And the actual time of its alignment directly depends on the actual deviation of the device from the horizontal. Therefore, in the characteristics, usually, the maximum alignment time is given — that is, for the situation when in the initial position the device is tilted to the maximum angle along both axes, longitudinal and transverse. Since the levels are far from being installed in this position, in fact the speed of bringing to the horizontal is often higher than the claimed one. Nevertheless, it makes sense to evaluate different models precisely according to the figures stated in the characteristics — they allow you to estimate the maximum amount of time that will have to be spent on alignment after the next movement of the device. As for specific indicators, they can vary from 1.5 – 2 s to 30 s.

Theoretically, the shorter the alignment time, the better, especially if there are large volumes of work ahead with frequent movements from place to place. However, in fact, when comparing different models, it is worth considering other points. First, we reiterate that the rate of leveling is highly dependent on the leveling limits; after all, the greater the deviation angles, the more time it usually takes for the mechanism to return the level to the horizontal. So, to directly compare w...ith each other in terms of the speed of self-leveling, it is mainly those devices in which the permissible deviation angles are the same or differ slightly. Secondly, when choosing, it is worth considering the specifics of the proposed work. So, if the device is to be used frequently on very uneven surfaces, then, for example, a model with a leveling time of 20 s and self-levelling limits of 6 ° will be a more reasonable choice than a device with a time of 5 s and limits of 2 °, since in In the second case, a lot of time will be spent on the initial (manual) installation of the device. And for more or less even horizontal planes, on the contrary, a faster device may be the best option.

Operating temperature

The temperature range at which the device is guaranteed to work for a sufficiently long time without failures, breakdowns and exceeding the measurement error specified in the characteristics. Note that we are talking primarily about the temperature of the device case, and it depends not only on the ambient temperature — for example, a tool left in the sun can overheat even in fairly cool weather.

In general, you should pay attention to this parameter when you are looking for a model for working outdoors, in unheated rooms and other places with conditions that are significantly different from indoor ones; in the first case, it makes sense to also make sure that there is dust and water protection (see "Protection class"). On the other hand, even relatively simple and "myopic" levels / rangefinders usually tolerate both heat and cold quite well.

Diode emission

The wavelength of the radiation emitted by the LED of the level or rangefinder; this parameter determines primarily the colour of the laser beam. The most widespread in modern models are LEDs with a wavelength of about 635 nm — at a relatively low cost, they provide bright red radiation, giving a well-visible projection. There are also green lasers, usually at 532 nm — the marks from them are even better visible, but such LEDs are quite expensive and rarely used. And radiation with a wave longer than 780 nm belongs to the infrared spectrum. Such a laser is invisible to the naked eye and is poorly suited for leveling, but it can be used in rangefinders — of course, with a viewfinder (see "Type" for more details).

Vertical projections

The number of vertical projections issued by the laser level during operation.

Most modern levels are designed for a strictly defined position when working; accordingly, the projection is called vertical, carried out from top to bottom relative to the standard position of the device. If there are several such planes, the level can be used for two or even three walls at once — this is useful, for example, for the simultaneous work of several people. At the same time, there are portable devices that can be used in different positions; for them, the main working plane is called vertical, although during operation it can be located both horizontally and at an angle, depending on specific tasks. Also note that the vertical projection can also give a horizontal line — for example, when installing a level on the floor.

Note that the number of projections is calculated not by geometric planes, but by individual laser elements, each of which is responsible for its own “work area”. For example, if the level has two vertical elements located at opposite ends and directed in different directions, they are considered as two projections even if these projections lie in the same plane.

Beam angle (vertical)

The sweep angle in the vertical plane provided by the level emitter. If there are several such radiators (for example, on both sides of the case), this parameter is given for each of them separately.

The sweep angle is, in fact, the coverage angle, that is, the width of the sector captured by the emitter when the line is formed. The wider this angle, the more convenient the device is to use, the lower the likelihood that the device will have to be moved up and down to build a line. On the other hand, a larger sweep angle (at the same range) requires more power — and this, accordingly, affects the cost and power consumption.

Beam angle (horizontal)

The sweep angle in the horizontal plane provided by the level emitter. If there are several emitters, their total coverage angle is indicated here; a typical example of such devices are models for full 360 °, not related to rotation.

Actually, all rotary devices, by definition, provide a coverage of 360 °. Therefore, it is worth paying attention to this parameter in cases where we are talking about more traditional laser levels. And here it is worth considering that a larger coverage angle, on the one hand, can provide additional convenience, on the other hand, it increases the price and power consumption of the device. So when choosing, you should proceed from real needs; detailed recommendations on this subject can be found in special sources.

Point projections

The number of individual points projected by the laser tool — rangefinder or level, see "Type" — when working. In the first case, one point projection is standardly provided — more is simply not required to measure distances. In levels, there can be several points, and some models do not have planar projections at all and work only with points. This format may not be as convenient as displaying lines; at the same time, with the same laser power, dot marks shine brighter and are more visible, especially at long distances. In addition, there are certain types of work for which point projection is considered optimal — for example, laying sewers, determining the locations for two holes in opposite walls, etc.

Zenith

Zenith in this case is called a point projection directed vertically upwards.

By itself, such a projection can be useful, for example, if you need to make holes in several floors, located strictly one above the other. It is enough to point the "anti-aircraft" laser at the hole located directly above it — and the mark from the beam that passed through this hole will indicate the point for the hole on the next floor. And if the device also has the nadir function (see below), then the combination of these functions will be very convenient for marking the floor and ceiling at the same time — for racks, partitions, etc.: marks from the zenith and nadir are located strictly one above the other.

Nadir

Nadir in this case is called a point projection directed vertically down.

By itself, such a projection can be used, in particular, for making holes on the same vertical in ceilings located at different levels. It is enough to make one of the holes, install a level above it — and the laser beam going vertically downwards will indicate the location of the next hole. And in devices that also have the zenith function (see above), the marks from the zenith and nadir projections are located strictly one above the other. This is very convenient when marking the floor and ceiling at the same time for racks, partitions, etc.
Bosch UniversalLevel 2 0603663800 often compared