USA
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison Zortrax M300 vs XYZprinting 3C10A FD 1.0 MR

Add to comparison
Zortrax M300
XYZprinting 3C10A FD 1.0 MR
Zortrax M300XYZprinting 3C10A FD 1.0 MR
Compare prices 1Outdated Product
TOP sellers
Main
Food 3D printer
Print technology
deposition modeling (FDM/FFF) /Layer Plastic Deposition/
deposition modeling (FDM/FFF)
Filament materialPLA, HIPS, PETG, ASA, ESD, Glassfood paste
3D model file format.stl, .obj, .dxf, .3mf.stl, .3w
Compatible softwareZ-SuiteXYZWare
Object dimensions (HxWxD)300x300x300 mm150x200x150 mm
Object volume27 L4.5 L
Printing process
Min layer thickness90 µm100 µm
Nozzle diameter0.4 mm
Min thread diameter1.75 mm
Heating bed temperature105 °C
Extruder (nozzle) temperature290 °C
Number of extruders11
More features
Features
heated bed
closed chamber
 
closed chamber
Data transfer
card reader
 
 
PC connection (USB)
General
LCD display
 
+
Power320 W
Dimensions47x49x66.5 cm61x48x47 cm
Weight27 kg
Added to E-Catalogoctober 2017september 2017

Filament material

 

3D model file format

File format for 3D models that the printer can handle.

Projects of 3D models are created using special programs (CAD — computer-aided design systems), while such programs can use different file formats, often incompatible with each other. This information can be useful both for selecting CAD for a specific printer model, and for assessing whether ready-made projects are suitable for printing on the selected model.

Among the most common file extensions nowadays (in alphabetical order) are — .3ds, .amf, .ctl, .dae, .fbx, .gcode, .obj, .slc, .stl, .ply, .vrml, .zrp.

Compatible software

Software for building models which the printer is optimally compatible with. The software used for 3D printing includes both CAD (automatic design systems for creating models) and slicers (software that break a three-dimensional model into separate layers, preparing it for printing). Therefore, this paragraph often indicates a whole list of software products.

Note that the degree of optimization in this case may be different: some models are compatible only with the claimed programs, but many printers are able to work with third-party CAD systems. However, it is best to choose software directly claimed by the manufacturer: this will maximize the capabilities of the printer and minimize the chance of failures and “inconsistencies” during operation.

Object dimensions (HxWxD)

The maximum dimensions of a product that can be printed on a 3D printer in one cycle.

The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.

As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large): — height — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — width — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — depth — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm.

Object volume

The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.

The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.

As for specific figures, the volume up to 5 litres can be considered as small, from 5 to 10 litres — medium, more than 10 litres — large.

Min layer thickness

The smallest thickness of a single layer of material that can be applied with a printer.

In photopolymer devices of SLA and DLP formats (see "Print Technology") the meaning of this parameter is simple: it is the smallest height of a one pass cycle of the working platform. The smaller this height, the better detailing can be achieved on the device; however, in such models, this height is usually small — most often less than 50 µm. But in devices based on FDM/FFF and similar technologies using nozzles, there are also higher rates — 51 – 100 µm and even more. Here it is worth noting the fact that a small minimum layer thickness allows efficient use of small nozzles and achieves better detail. On the other hand, increasing detailing reduces productivity, and to compensate this fact, it is necessary to increase the print speed by increasing power (both heating and blowing), which, in turn, affects the cost. Therefore, choosing one should proceed from real needs: for objects with relatively low detail, there is no need to look for a printer with a small layer thickness.

It is worth noting that in FDM/FFF printers, the optimal layer thickness depends on the nozzle diameter (see below) and the specifics of printing — for example, for a “in one line” perimeter without filling, you can use the minimum layer thickness, while for filling it is not recommended. Det...ailed recommendations on the optimal layer thickness for different situations can be found in special guides.

Nozzle diameter

The diameter of the regular working nozzle in a printer operating with the FDM/FFF or PJP technology (see "Printing Technology").

This is one of the key parameters that determine the capabilities of the printer. The width of separate lines in each layer and the optimal thickness of the layer itself are directly related to the nozzle diameter. So, with a small nozzle, these width and thickness will also be small, which allows the better detail, but reduces the actual print speed (as well as the durability of the completed product due to the increase in the number of joints). And large nozzles are better suited for high-volume tasks where print performance and design reliability are more important than high precision.

More detailed recommendations on choosing a diameter for a specific task and layer thickness can be found in special sources. It is also worth considering that many modern 3D printers allow you to change nozzles, and for more or less serious 3D printing, it is directly recommended to have several replacement nozzles in stock. Therefore, some models with several nozzles of different diameters are provided in one package.

Min thread diameter

The smallest diameter of filament that can be used in the printer.

This parameter is relevant for models using FDM/FFF or PJP methods (see "Print Technology"). Thermoplastic for such printers in its original form is a thread on a special spool; during the printing process, this thread is fed to the extruder using a special gear. This limitation is due to the fact that if the thread thickness is too small, the feed mechanism will not be able to effectively capture it and ensure uniform movement at the desired speed. But with thicker threads, the feed system can handle without problems.

Heating bed temperature

Maximum heating temperature in 3D printers with heated bed (for more details, see the relevant paragraph). The higher the limit, the more varieties of plastic can be used for printing. So, models with heating up to 100 °C are suitable for 3D printing with PLA plastic, with a bed temperature of 100 to 120 °C — for working with ABS plastic and nylon, high-temperature ones — allow the use of polycarbonate and refractory varieties of plastic.