USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison ELARI KidPhone 2 vs ELARI Fixitime 3

Add to comparison
ELARI KidPhone 2
ELARI Fixitime 3
ELARI KidPhone 2ELARI Fixitime 3
from $66.99 
Outdated Product
Outdated Product
TOP sellers
Main
Sending SMS and making calls. Tracking the location of the child and setting up safe perimeter zones. Support for voice calls. Colour touch display. Water protection IP65. Preinstalled educational game.
Created based on the cartoon "Fixies". functional application. The ability to track the location of the child. Sending SMS and making calls. Long battery life.
Typekid wearable beaconkid wearable beacon
InterfaceBluetooth v 4.0Bluetooth v 4.0
Telephony
SIM card supportmicro-SIMmicro-SIM
Calls and alerts
notifications
sound signal
vibration
built-in microphone
built-in speaker
notifications
sound signal
vibration
built-in microphone
built-in speaker
Sports and tourism
Possible measurements
number of steps
distance traveled
calories burned
activity time
number of steps
distance traveled
calories burned
activity time
Navigation
GPS module
GPS module
Parental control
Remote trackingGSM+GPSGSM+GPS+Wi-Fi
Removal sensor
Perimeter control (geozone)
Remote microphone activation
SOS button
Speed dial
Display
Typecolourcolour
Display typeTFTIPS
Size1.4 "1.3 "
Screen resolution128х128 px
PPI129 ppi
Watch face protectionplasticplastic
Hardware
RAM4 MB
Memory storage128 MB
Extra features
 
accelerometer
 
Wi-Fi
accelerometer
camera
Power source
Device chargingmicroUSBmicroUSB
Source of powerLi-IonLi-Ion
Battery capacity480 mAh
Operating time (normal mode)3 days
Operating time (active mode)5 h
Case and strap
Materialplasticplastic
Strapnon-removablenon-removable
Strap Options
rubber/silicone
rubber/silicone
Clasp optionsclassic buckleclassic buckle
General
Waterproof50 WR / 5 ATM
Dustproof & waterproofIP56
Dimensions (without strap)47x39.6x15 mm
Weight47 g
Color
Added to E-Catalogjanuary 2018november 2017

Remote tracking

The type of remote tracking provided by the kids beacon (see "Type").

Remote tracking allows the parent to follow the map where the child is currently located. To do this, the beacon determines the current coordinates using the GPS satellite system and transmits them to the parent's smartphone or tablet. Actually, the presence of GPS is mandatory for all types of remote tracking, the difference between them is in how the data is transmitted to the parent. The options might be:

— GSM+GPS. Beacons that transmit data only through the mobile network. Note that the name "GSM" is conditional here, such models can fully work in more advanced 3G (UMTS) and 4G (LTE) networks. The main disadvantage of such a connection is the fact that it requires additional financial costs and control over the state of the account, so that the connection does not disappear at an unexpected moment. On the other hand, these costs are low, and mobile networks are available almost everywhere these days.

— GSM+GPS+Wi-Fi. Beacons capable of transmitting information both through mobile networks and through Wi-Fi access points. Due to additional equipment, they are somewhat more expensive than similar models of the GSM + GPS format, but the communication capabilities are more extensive. So, the mobile network in such devices is mainly used as a fallback in case of lack of Wi-Fi — this saves money and battery power. And Wi-Fi, in turn, can b...e available even where there is no normal mobile network.

Removal sensor

A sensor that signals an attempt to remove the device from the child's hand. Such an attempt can be made by both the attacker and the child himself — intending to outwit the parents. The removal sensor usually reacts to skin contact and is triggered if the contact is interrupted for more than 1-2 seconds; in such a situation, a notification is sent to the parent smartphone or tablet, and in some models, its own microphone is also automatically turned on so that the parent can hear what is happening around. Anyway, this feature provides additional security for the child and peace of mind for parents.

Display type

— TFT. The simplest type of liquid crystal panel used in colour displays. They provide a relatively low, but generally sufficient image quality, while they are much cheaper than more advanced options. This type does not require backlight — more precisely, the backlight is part of the screen itself and turns on with it. Of the unequivocal disadvantages, it is worth noting that many TFT panels have rather limited viewing angles; however, as technology improves, this drawback is gradually eliminated.

— IPS. A variety of LCD panels created in an attempt to eliminate the shortcomings of TFT. There are many subspecies of IPS panels, but they all feature high colour reproduction quality, excellent brightness and wide viewing angles. The disadvantage of this option is the relatively high cost.

OLED. In this case, we mean the technology used to create the simplest monochrome displays. In such screens, each segment that makes up the image is a separate LED, which eliminates the need for external illumination (and even the display itself can be used as a flashlight).

AMOLED. Screens based on a panel of active organic light emitting diodes. Similar to various types of TFT, this technology allows the creation of high-resolution colour displays. Its key feature is that the screen doe...s not require a separate backlight system — in AMOLED panels, each pixel glows independently, resulting in somewhat lower power consumption. At the same time, such screens are distinguished by good colour reproduction quality, excellent brightness and wide viewing angles, however, they are much more expensive than TFT.

Super AMOLED. An enhanced version of the AMOLED technology described above, delivering more expansive colour reproduction and brightness, as well as improved touch accuracy and speed, all at a thinner display and lower power consumption. In addition, the degree of reflection of external light is reduced, such a panel gives less glare and is better visible in sunlight.

— E-Ink (E-Paper). Displays made using "electronic paper" technology; in addition, this category also includes screens such as Memory LCD. The classic E-Ink screen is black and white, does not have a backlight (however, it can be built into particular gadgets), has a very low refresh rate and is poorly suited even for stopwatches, not to mention videos or animated pictures. On the other hand, "electronic paper" is perfectly visible in bright light and has a very low power consumption: it requires electricity only when the image is changed, while a still image remains visible even when the power is completely turned off. Memory LCD screens, in turn, with the same advantages, are almost as good as classic LCD panels in terms of refresh rate, but for a number of reasons they are not widely used.

Transflective. A specific type of LCD panels that can work both due to its own backlight and due to reflected light. In bright external light (for example, in the sun), such a screen effectively reflects it and does not require a separate backlight — however, it is still included in the design and turns on in low light. This type of operation can significantly reduce power consumption compared to traditional LCD screens, where the image is not visible without backlight; in addition, good visibility in bright light is also an important advantage. The main disadvantage of panels of this type is their high cost; in addition, they are made mostly monochrome.

- LTPO. OLED and AMOLED matrices with an adaptive refresh rate that varies over a wide range based on the tasks performed. When rendering dynamic frames, screens with LTPO technology automatically raise the refresh rate to the maximum values, while viewing static images, they automatically reduce it to the minimum. At the heart of the technology is a traditional LTPS substrate with a thin TFT oxide film on top of the TFT base. Dynamic control of the refresh rate is provided by controlling the electron flow. The key benefit of LTPO screens is their reduced power consumption.

Size

The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.

A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.

It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.

PPI

The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

RAM

The amount of random access memory (RAM) installed in the gadget.

This parameter is one of the key ones for the overall performance of the system: the more RAM, the faster the device works, the easier it is to handle tasks with high hardware requirements and the wider the set of applications that the gadget is able to run. Note that a large amount of RAM can compensate for even a relatively weak CPU. At the same time, you need to remember that different operating systems (see above) have different requirements for RAM and features of its use; therefore, only models on the same software platform can be compared by this indicator.

Memory storage

The amount of own storage provided in the design of the watch/bracelet. This memory is used for permanent storage of various information: call log, received SMS and other messages, additional applications, data on physical activity for a certain time, etc. The larger its volume, the more data can be stored in the device without the need to clean it to free up space. On the other hand, in the operation of smartwatches, large volumes ( 64 GB, 32 GB, 16 GB, even 8 GB and 4 GB) are not always required, capacious drives are quite expensive, and replaceable cards installed in corresponding slot (see below).

Extra features

Built-in player. The presence of a player in the smartwatch allows you to use the gadget to listen to music. There is no need to connect to the phone for this. The songs will play directly from the watch. Therefore, these devices must necessarily have an impressive (as for a watch) amount of storage and be able to connect to headphones (for connection with headphones).

Light sensor. A sensor that monitors the brightness of ambient light. One of the most popular ways to use this feature is to auto-adjust the brightness of the display: in bright light, it increases so that the image remains visible, and at dusk it decreases, which reduces eye strain and energy consumption. In addition, other more specific features may be provided — for example, turning on the screen when pulling back the sleeve of clothing.

WiFi. A technology originally used to access the Internet via wireless access points, but more recently also used for direct communication between two devices (such a connection has several advantages over traditional Bluetooth). In wearable gadgets, the first option is most often provided, although the second is also found. However, the specific uses of Wi-Fi may be different depending on the device: accessing websites and various Internet services, remote communication with smart home systems, remote control of digital cameras and other electr...onics, transmission of the GPS- coordinates via Internet (in children's beacons), etc.

NFC. Wireless communication technology over short distances (up to 10 cm). The methods of its application, including in wearable devices, may be different. One of the more popular options is using contactless payment (see below); however, the presence of such a function does not hurt to verify separately. Another common feature is the simplification of Bluetooth connection with a smartphone or tablet that also has NFC: instead of manual configuration, it is enough to bring one device to another — and they will automatically establish a connection, all that remains is to confirm it. Other ways of interaction may also be possible, for example, launching a “sports” application on a smartphone when bringing a fitness tracker to it. And theoretically, more specific options for using NFC are also allowed — for example, as a travel pass, ID, etc. Actually, in many models of wearable gadgets, the set of these methods is limited only by installed applications.

Contactless payment. The possibility of using a wearable gadget for contactless payment. This feature is found only in models with NFC (see above); it actually turns the device into an analogue of a credit card with a chip and allows you to pay without taking the card out of your wallet — just bring your hand with the gadget to the terminal reader. This provides not only additional convenience, but also security. So, bringing the watch to the terminal is definitely easier than reaching into your pocket or purse for a credit card — especially if your hands are busy shopping. And instead of a traditional card, from which an attacker can copy basic details such as a number, CVV code and expiration date (for example, by “peeping” them with the built-in camera), a gadget is used that transmits this data in encrypted form and does not display it explicitly anywhere.
To use contactless payment, usually, you need to synchronize your gadget with your smartphone and set up such payment in the Google Pay or Apple Pay system. But to make payments, a smartphone is no longer required — many wearable devices are able to perform this feature completely autonomously (although this possibility still needs to be specified separately).

Accelerometer. A sensor that determines the direction of gravity, as well as the accelerations acting on the device. This allows you to track two parameters at once: the current position in space and various physical influences (like tapping or shaking). Most often, the accelerometer is responsible for two main features: automatic rotation of the image on the screen, as well as the operation of the pedometer (in fact, the presence of such a sensor is almost guaranteed to mean the presence of a pedometer, see "Possible measurements"). However, there are other ways to use this sensor — for example, rejecting an incoming call when shaking the watch, turning on the screen when tapping on it, etc.

— Gyroscope. A device that allows you to track the turns of the gadget in one direction or another. Typically used in conjunction with an accelerometer. The gyroscope improves the accuracy of positioning in space (which has a positive effect on the quality of the pedometer and other similar functions), and also provides additional options for managing gestures. However, the specific applications of this sensor are highly dependent on the model.

— Camera. The watch/bracelet has its own built-in camera; its location and purpose differs from model to model. In some devices, the lens is located on the front panel, above the screen, and the matter is limited only to video communication and taking selfies, while others allow you to shoot “classic” photos or videos. At the same time, it is worth noting that anyway, the specs of such cameras are usually very limited — for example, the resolution rarely exceeds 2 megapixels, and autofocus is provided only in the most advanced models.

— Flashlight. Built-in flashlight — usually in the form of a small LED mounted directly in the case. Usually, it has a relatively modest brightness, but it can still be useful for simple tasks like lighting your path at night, lighting in a garage or basement, etc.
ELARI KidPhone 2 often compared
ELARI Fixitime 3 often compared