USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison Smart Watch Smart V8 vs Smart Watch Smart Q18

Add to comparison
Smart Watch Smart V8
Smart Watch Smart Q18
Smart Watch Smart V8Smart Watch Smart Q18
from $49.99 
Outdated Product
Compare prices 3
TOP sellers
Main
OGS display, pedometer.
Typewatch phonewatch phone
InterfaceBluetooth v 3.0Bluetooth v 3.0
Telephony
SIM card supportmicro-SIMmicro-SIM
Calls and alerts
notifications
sound signal
vibration
built-in microphone
built-in speaker
notifications
sound signal
vibration
built-in microphone
built-in speaker
Sports and tourism
Possible measurements
number of steps
movement speed
calories burned
activity time
 
 
 
 
Display
Touch screen
Typecolourcolour
Display typeTFTTFT
Size1.54 "1.54 "
Screen resolution240х240 px240х240 px
PPI220 ppi
Hardware
CPU frequency
533 MHz /MediaTek MTK6260A/
RAM32 MB128 MB
Memory storage32 MB64 MB
Memory card slot
 /microSD, before 16 GB/
 /microSD/
Extra features
accelerometer
camera /0.3 MP/
accelerometer
camera /1.3 Мп/
Power source
Device chargingmicroUSBmicroUSB
Source of powerLi-PolLi-Ion
Battery capacity350 mAh500 mAh
Operating time (active mode)53 h
Case and strap
Materialmetalplastic
Bezelmetal+
Strapremovablenon-removable
Strap Options
rubber/silicone
rubber/silicone
Clasp optionsclassic buckleclassic buckle
General
Protection ratingIP56
Dimensions (without strap)53х44.8х12.95 mm60x40x12 mm
Weight63 g50 g
Color
Added to E-Catalogmarch 2017august 2016

Possible measurements

Types of sports and medical data collected by the gadget (plus some features of a similar purpose, such as sleep tracking, smart alarms, stress levels and women's calendar). Note that the features from this list can be found not only in specialized fitness trackers (see "Type"), but also in more traditional devices like smartwatches. Here are the most popular options:

Pulse rate. Heart rate is one of the most important physiological parameters of a person. So that sports training is as effective as possible, the heart rate must be in a certain range (the specific value depends on the purpose of the training and the personal data of the user). And for some illnesses and treatments, a faster or slower heart rate can be an important signal, including a warning of danger.

Pressure (tonometer). A sensor that measures the user's blood pressure. Note that the accuracy of such a sensor is usually quite low, the measurement error can be 10% or even more; so it will not replace a full-fledged medical tonometer. On the other hand, a gadget with this feature is quite capable of detecting a critical increase or decrease in pressure, which will allow you to take the necessary measures in a timely manner.

ECG. A sen...sor that allows you to get detailed data about the work of the user's heart. Note that such a sensor is not a full-fledged electrocardiograph — in fact, it is an advanced type of heart rate monitor that can track the features of the heart rhythm. However, even this is enough to detect some dangerous phenomena — for example, atrial fibrillation, which at first is imperceptible to a person — and take appropriate measures in time.

The blood oxygen. A sensor (the so-called pulse oximeter) that determines the saturation of the blood with oxygen (saturation); at the same time, the measurement is carried out by a non-invasive method — without punctures and other damage to the skin. Like most medical sensors in wearable gadgets, it is not accurate and is not a full-fledged medical device, but it is quite capable of responding to a critical decrease in the level of oxygen in the blood. It is believed that the presence of a pulse oximeter is relevant primarily for certain diseases, when saturation may decrease due to the disease itself or the characteristics of the treatment being taken. However, this feature can also be useful for quite healthy users who often travel at high altitudes — primarily climbers and aeronauts.

Body temperature. The presence of a sensor for measuring temperature allows you to take measurements without the use of thermometers. Naturally, errors can occur, so a slight deviation from the norm may not be determined, but the device will easily fix a significant increase in temperature.

T° of the environment. Even though smartwatches are worn on the body, the built-in sensors in them are usually designed to measure the ambient temperature. This information can be useful both for a general assessment of the surrounding conditions, and for specific purposes — in particular, weather forecasting. It is not uncommon for watches with this feature to also have a barometer (see "Navigation").

— Number of steps. The traditional pedometer is a feature for counting the number of steps taken by the user. These measurements usually use data from the accelerometer, and the results are quite accurate: most modern accelerometers are well calibrated and are quite capable of distinguishing tremors during steps from hand waves and other extraneous movements. The exception is trips in land transport: many wearable gadgets perceive shaking as steps, which should be taken into account when evaluating the results.

— Distance travelled. Measurement of the total distance traveled by the user. For this, either data from a pedometer or a GPS module are usually used (see "Navigation"); each option has its own merits. So, the pedometer is cheaper, it can be used even in rooms without windows, where the signal from satellites does not reach, and on simulators like treadmills, where the user does not move relative to the ground. GPS, in turn, gives higher accuracy, especially over long distances, and is not prone to false positives in vehicles. In some advanced gadgets, these methods can be combined — this is not cheap, but it allows you to combine the advantages of both options and achieve maximum accuracy.

— Movement speed. Determining the speed of the user's movement. As with distance travelled, measurement can be done in a variety of ways; see above for more details. Also note here that many gadgets with this feature are able not only to determine the current speed, but also to constantly record its value and display various indicators: the maximum achieved speed, the average value for training, etc.

— Energy spent (calories). Measurement of the number of calories burned by the user in the process of movement. These data are rather approximate, as they are calculated by indirect parameters (speed and range of movement, personal specs of a person, etc.). However, even this accuracy is quite enough to determine the overall effectiveness of training.

— The amount of fat burned. Measuring the amount of fat burned per workout. As in the case of calories (see above), the result of such measurements is quite approximate. However, in fact, absolute accuracy is not required, and fat loss data can be a powerful motivator.

— Activity time. A measurement of the total time during which the user is actively moving. In many models, such metering may provide additional options, such as fixing several periods of activity with breaks between them and determining the ratio between the time of movement and the time of rest.

— Smart alarm. An alarm clock that monitors the user's sleep phases and gives a signal to wake up at the optimal time for this. Human sleep consists of alternating phases, and waking up in the unfortunate phase creates a feeling of lethargy and fatigue, even if there was enough time to sleep. A smart alarm clock avoids such situations; its work is based on tracking the pulse, breathing rate and other parameters that differ depending on the phase of sleep. Note that the deviation of the signal from the set time can be up to half an hour, but this is usually a deviation towards an earlier rise. As a result, the risk of being late with a smart alarm clock is close to zero, and the lack of sleep time is compensated by the optimal moment of awakening.

Sleep tracking. Sleep quality assessment is based on data from on-board sensors of fitness trackers or smartwatches. In particular, the heart rate monitor controls the number of contractions of the heart muscle, the accelerometer controls the user's movements. A blood oxygen sensor, if available on the wearable, improves the accuracy of sleep quality data collection. According to the readings of the sensors, the moments of entering and exiting the deep sleep phase are recorded. It is during this period that the restoration of the nervous system and the accumulation of energy for the coming day take place. In deep sleep, a person can completely reboot and gain strength, while in REM sleep, brain activity practically does not differ from the state of wakefulness. The sleep quality analysis feature helps you determine the best time to go to sleep and provides personalized recommendations to improve your night's sleep.

— The level of stress. The level of stress of the body allows you to evaluate the metric that determines the variability of the heartbeat — the difference in time between successive contractions of the heart muscle. Respiration rate, maximum oxygen consumption and excess oxygen consumption after exercise are also taken into account. The stress level score gives a clear picture of the user's experience during the day, however, the value of this parameter is in determining the most optimal body regimen for training. A high heart rate variability usually indicates you are in good shape for playing sports, while a low one can indicate fatigue, dehydration, or feeling unwell. All this directly affects the ability to train effectively. There are no clear units for measuring the level of stress — in smartwatches, the parameter is usually shown as a scale from 0 to 100, often indicating the number of hours the body is under stress and the time it takes to recover to a normal state.

— Women's calendar. The tool for tracking the menstrual cycle keeps abreast of the events of the expected dates of the menstrual period, allows you to determine the most favorable days for conception, helps to notice alarming symptoms in time and prevent many diseases in case of cycle disorders. Based on your total cycle length, the device calculates a predicted date for your next period. The women's calendar records cycle dates, fertility windows, and the day of ovulation. By adding your own notes to it, you can track fluctuations in sleep, appetite, fitness, mood changes and predict well-being for a particular day.

In addition to those described above, more specific types of measurements can be found in modern wearable gadgets.

Touch screen

The presence of a touch screen in a gadget — like those used in smartphones and tablets. Such a screen provides additional convenience: many features are easier to control with touches and gestures on the display than with buttons and other hardware. On the other hand, the touch screen significantly affects the cost of the device compared to alternatives.

PPI

The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

CPU frequency

The clock speed of the processor (CPU) installed in the gadget.

Theoretically, a high clock speed has a positive effect on speed and performance; however, in fact, this parameter has a purely reference and promotional value. This is due to the fact that the real capabilities of the CPU depend on a number of other factors, and the overall performance of the system also depends on the properties of the rest of the hardware. In addition, manufacturers select processors in such a way that their performance is guaranteed to be sufficient, taking into account the planned specialization and functionality of the gadget. Therefore, when choosing this parameter, you can not pay much attention.

RAM

The amount of random access memory (RAM) installed in the gadget.

This parameter is one of the key ones for the overall performance of the system: the more RAM, the faster the device works, the easier it is to handle tasks with high hardware requirements and the wider the set of applications that the gadget is able to run. Note that a large amount of RAM can compensate for even a relatively weak CPU. At the same time, you need to remember that different operating systems (see above) have different requirements for RAM and features of its use; therefore, only models on the same software platform can be compared by this indicator.

Memory storage

The amount of own storage provided in the design of the watch/bracelet. This memory is used for permanent storage of various information: call log, received SMS and other messages, additional applications, data on physical activity for a certain time, etc. The larger its volume, the more data can be stored in the device without the need to clean it to free up space. On the other hand, in the operation of smartwatches, large volumes ( 64 GB, 32 GB, 16 GB, even 8 GB and 4 GB) are not always required, capacious drives are quite expensive, and replaceable cards installed in corresponding slot (see below).

Source of power

The type of battery that is installed in the watch/bracelet.

— Li-Ion (lithium-ion). Battery of the original format, made using Li-Ion technology. Such batteries combine compact dimensions with good capacity, they are unpretentious in use, durable and reliable, and among the significant drawbacks, one can only note some sensitivity to low temperatures. As a result, this technology is one of the most popular in modern portable electronics, including wearable accessories.

— Li-Pol (lithium polymer). An updated and improved version of Li-Ion technology (see above). With the same basic advantages, lithium-polymer cells have even greater capacity with the same small dimensions and weight, they hold voltage more stable as they are discharged and are more resistant to low temperatures. At the same time, these batteries are somewhat more expensive.

— Battery. Powered by a replaceable battery — usually a compact "tablet" of one type or another. Such batteries have a relatively low capacity and are usually made disposable, that is, they cannot be recharged. Therefore, such power is found mainly among two categories of devices: in fitness trackers without a display, as well as watches of a classic design with a minimum of smart features that do not require a lot of energy.

Battery capacity

The capacity of the battery that is installed in the gadget.

Theoretically, the higher the capacity, the longer the battery can work on a single charge. However, in fact, the battery life of the gadget also depends on its power consumption, and it is determined by the specs of the display and the hardware. Therefore, only models of the same type with very similar specs can be compared in terms of battery capacity; and for an accurate assessment of battery life, it is better to focus on the directly claimed operating time in one mode or another (see below).

It is also worth mentioning that high-capacity batteries inevitably turn out to be quite heavy and bulky. So the capacity of batteries installed in wearable gadgets is also greatly limited by size and weight.

Operating time (active mode)

The time that the gadget is able to work on one charge of the battery in the active mode of use.

For watch-phones (see “Type”), this usually means a talk mode, for other gadgets, an intensive work mode when numerous features and sensors are used and there is a constant exchange of data with a smartphone/tablet. However, the specific understanding of the "active mode" for different manufacturers may vary: some indicate the time at maximum performance (that is, in fact, guaranteed battery life), others — in some kind of "average mode". However, anyway, this is a fairly clear parameter that describes the battery life of a particular model quite well (and is much closer to real indicators than the time in normal mode mentioned above).

Note that for models with a GPS sensor (see "Navigation"), the specifications may additionally specify the time of active operation using such a sensor. See "Operating time (GPS)" for details.
Smart Watch Smart V8 often compared
Smart Watch Smart Q18 often compared