USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison Smart Watch Smart Q100s vs Smart Watch Smart Q60

Add to comparison
Smart Watch Smart Q100s
Smart Watch Smart Q60
Smart Watch Smart Q100sSmart Watch Smart Q60
from $47.96 up to $53.16
Outdated Product
from $25.96 up to $39.16
Outdated Product
TOP sellers
Main
Colour touch display. Possibility of voice communication. Controlling the location of the child. Educational games. Large selection of colours.
Typekid wearable beaconkid wearable beacon
InterfaceBluetooth v 3.0Bluetooth v 3.0
Telephony
SIM card supportnano-SIMmicro-SIM
Calls and alerts
notifications
voice control
sound signal
built-in microphone
built-in speaker
notifications /microSIM/
voice control
sound signal
built-in microphone
built-in speaker
Sports and tourism
Possible measurements
number of steps
distance traveled
calories burned
activity time
number of steps
distance traveled
calories burned
activity time
Navigation
GPS module /+ GLONAS/
GPS module
Parental control
Remote trackingGSM+GPSGSM+GPS
Removal sensor
Perimeter control (geozone)
Remote microphone activation
SOS button
Speed dial
Display
Typecolourcolour
Display typeIPSTFT
Size1.54 "0.98 "
Screen resolution128х64 px
PPI146 ppi
Hardware
CPU frequency
364 MHz /MTK6261/
Extra features
accelerometer
accelerometer
Power source
Device chargingmicroUSBmicroUSB
Source of powerLi-PolLi-Pol
Battery capacity400 mAh400 mAh
Operating time (active mode)168 h
Case and strap
Materialplasticplastic
Strapremovableremovable
Strap Options
 
rubber/silicone
leather
 
Clasp optionsclassic buckle
General
Protection ratingIP6530 WR / 3 ATM
Dimensions (without strap)31х52х11.8 mm44х38х15 mm
Weight35 g37 g
Color
Added to E-Catalogmarch 2017august 2016

SIM card support

Type of SIM card for which the gadget is designed. SIM cards are required for mobile communication modules, which are mainly found in watch phones and children's beacons (see "Type"). And their types can be:

Micro-SIM. Reduced in size and improved, in comparison with the obsolete mini-SIM, a variety of SIM-cards: the dimensions were reduced to 15x12 mm, while the amount of built-in memory and the overall functionality of the chip were slightly expanded.

Nano-SIM. The newest and smallest variety of replaceable SIM-cards: it has dimensions of only 12x9 mm.

It is worth noting that nowadays, most mobile operators sell SIM cards that are compatible with all three types of slots at once: the chip itself has a nano-SIM format, and such a card can be installed in a micro-SIM or mini-SIM slot using an adapter frame. So paying attention to the type of SIM card makes sense, first of all, if you already have a "sim card" of a strictly defined format and you do not want to change it.

A separate variety is represented by e-SIM(Embedded SIM) — non-removable modules that need to be programmed for a particular mobile operator. On the one hand, this creates some inconvenience: to change the number, changing the SIM card can be easier than reconfiguring the e-SIM. On the other hand, e-SIMs are more compact and...better suited for wearable gadgets, and when you change your number, you do not need to spend money on buying a new card. The compatibility of such a module with the network of a particular operator should be specified separately.

Display type

— TFT. The simplest type of liquid crystal panel used in colour displays. They provide a relatively low, but generally sufficient image quality, while they are much cheaper than more advanced options. This type does not require backlight — more precisely, the backlight is part of the screen itself and turns on with it. Of the unequivocal disadvantages, it is worth noting that many TFT panels have rather limited viewing angles; however, as technology improves, this drawback is gradually eliminated.

— IPS. A variety of LCD panels created in an attempt to eliminate the shortcomings of TFT. There are many subspecies of IPS panels, but they all feature high colour reproduction quality, excellent brightness and wide viewing angles. The disadvantage of this option is the relatively high cost.

OLED. In this case, we mean the technology used to create the simplest monochrome displays. In such screens, each segment that makes up the image is a separate LED, which eliminates the need for external illumination (and even the display itself can be used as a flashlight).

AMOLED. Screens based on a panel of active organic light emitting diodes. Similar to various types of TFT, this technology allows the creation of high-resolution colour displays. Its key feature is that the screen doe...s not require a separate backlight system — in AMOLED panels, each pixel glows independently, resulting in somewhat lower power consumption. At the same time, such screens are distinguished by good colour reproduction quality, excellent brightness and wide viewing angles, however, they are much more expensive than TFT.

Super AMOLED. An enhanced version of the AMOLED technology described above, delivering more expansive colour reproduction and brightness, as well as improved touch accuracy and speed, all at a thinner display and lower power consumption. In addition, the degree of reflection of external light is reduced, such a panel gives less glare and is better visible in sunlight.

— E-Ink (E-Paper). Displays made using "electronic paper" technology; in addition, this category also includes screens such as Memory LCD. The classic E-Ink screen is black and white, does not have a backlight (however, it can be built into particular gadgets), has a very low refresh rate and is poorly suited even for stopwatches, not to mention videos or animated pictures. On the other hand, "electronic paper" is perfectly visible in bright light and has a very low power consumption: it requires electricity only when the image is changed, while a still image remains visible even when the power is completely turned off. Memory LCD screens, in turn, with the same advantages, are almost as good as classic LCD panels in terms of refresh rate, but for a number of reasons they are not widely used.

Transflective. A specific type of LCD panels that can work both due to its own backlight and due to reflected light. In bright external light (for example, in the sun), such a screen effectively reflects it and does not require a separate backlight — however, it is still included in the design and turns on in low light. This type of operation can significantly reduce power consumption compared to traditional LCD screens, where the image is not visible without backlight; in addition, good visibility in bright light is also an important advantage. The main disadvantage of panels of this type is their high cost; in addition, they are made mostly monochrome.

- LTPO. OLED and AMOLED matrices with an adaptive refresh rate that varies over a wide range based on the tasks performed. When rendering dynamic frames, screens with LTPO technology automatically raise the refresh rate to the maximum values, while viewing static images, they automatically reduce it to the minimum. At the heart of the technology is a traditional LTPS substrate with a thin TFT oxide film on top of the TFT base. Dynamic control of the refresh rate is provided by controlling the electron flow. The key benefit of LTPO screens is their reduced power consumption.

Size

The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.

A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.

It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.

PPI

The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

CPU frequency

The clock speed of the processor (CPU) installed in the gadget.

Theoretically, a high clock speed has a positive effect on speed and performance; however, in fact, this parameter has a purely reference and promotional value. This is due to the fact that the real capabilities of the CPU depend on a number of other factors, and the overall performance of the system also depends on the properties of the rest of the hardware. In addition, manufacturers select processors in such a way that their performance is guaranteed to be sufficient, taking into account the planned specialization and functionality of the gadget. Therefore, when choosing this parameter, you can not pay much attention.

Operating time (active mode)

The time that the gadget is able to work on one charge of the battery in the active mode of use.

For watch-phones (see “Type”), this usually means a talk mode, for other gadgets, an intensive work mode when numerous features and sensors are used and there is a constant exchange of data with a smartphone/tablet. However, the specific understanding of the "active mode" for different manufacturers may vary: some indicate the time at maximum performance (that is, in fact, guaranteed battery life), others — in some kind of "average mode". However, anyway, this is a fairly clear parameter that describes the battery life of a particular model quite well (and is much closer to real indicators than the time in normal mode mentioned above).

Note that for models with a GPS sensor (see "Navigation"), the specifications may additionally specify the time of active operation using such a sensor. See "Operating time (GPS)" for details.

Strap Options

Skin. Leather straps are typical for a business style, they look rich and respectable, however, they are quite expensive. On the practical side, this material is strong, reliable and resistant to moisture; at the same time, it is quite demanding to care for, and if the appropriate rules are not followed, cracks may appear on the strap.

Rubber/silicone. Quite a popular material used not only for fitness trackers, but also for traditional watches. Rubber straps do not look as rich as leather ones, but they are also quite decent, while they are strong enough, durable, resistant to moisture and pleasantly felt on the hand. Silicone is similar in properties, which in appearance is practically indistinguishable from rubber. But the silicone is softer, does not pinch the hand and is more pleasant to the touch.

Metal. Metal straps (bracelets) are mainly made of stainless steel, but there are other options. Anyway, bracelets are highly durable and can be both light and massive, depending on the composition of the metal. It is also worth mentioning the high thermal conductivity of this material. Such a bracelet pleasantly cools the hand in the warm season, but causes the opposite effect in the cold.

Milanese bracelet. Metal bracelets made of links of very fine weaving (about 1 mm in size, or even less). The m...aterial of such a bracelet may be different; most often it is steel, but more expensive metals are also found. Anyway, such a bracelet has an original appearance, and also provides good air access, allowing the skin to breathe. Among the shortcomings of Milanese bracelet, it can be noted that the links can “bite” the hair on the arm, creating discomfort.

— Textile. Usually, strong dense fabric (like nylon-based CORDURA) is used for straps, resistant to moisture, ultraviolet and other adverse factors. For some users, this material is more pleasant than other options; however, for a number of technical reasons, fabric straps were not widely used.

Many models of wearable gadgets are available with several strap options to choose from.

Clasp options

The type of clasp used on a gadget's strap or bracelet.

The most common types of clasps today are the classic buckle, folding clip, folding lock, magnet, snap fastener, and Hook-and-loop. If several options are indicated in the specs at once, it means that the gadget is supplied or can be supplied with different strap options using different types of fasteners. Here is a detailed description of each type:

– Classic (with buckle). Clasp resembling a belt buckle; originally used in traditional wristwatches, but nowadays it has become widespread in smart gadgets. On one half of such a fastener there is a U-shaped or similar frame with a special pin, on the second — a row of holes. When fastening, the second half is threaded through the frame, and the pin is fixed in one of the holes. At the same time, by choosing a particular hole, you can adjust the size of the strap. In addition, the advantages of the classics are reliability, neat appearance and compatibility with many strap materials (with the exception of metal bracelets).

— Clip (unfolding). An option for metal bracelets. The most widespread type of clip, consisting of two curved plates connected by an axis. When unfastened, they open like a book, increasing the overall length of the bracelet and allowing you to easily r...emove the watch from your hand, and when fastened, they fold close to each other and are fixed, securing the bracelet on your wrist. Another, less popular variety is the “butterfly”, which has two flaps that, when opened, rise like wings. In general, the clips are very easy to use, but difficult to set up. They fasten and unfasten with literally one click, but it’s impossible to reconfigure the size of a bracelet with a clip “on the go” — you have to disconnect and reconnect special latches, which requires an additional tool and some skill.

— Magnetic. A fastener in which a strong permanent magnet plays the role of a latch. Such devices are simple and convenient both in use and in adjustment: for fastening and unfastening, it is enough to “stick” or “unstick” a magnet, and size adjustment is carried out right at the time of fastening — by tightening the strap to the desired length. The main disadvantage of such a clasp is that it can only be used with metal bracelets made of magnetic alloys — for example, steel.

— With lock. A clasp that resembles the buckle described above, but has a slightly different principle of operation. On one side of the strap with such a clasp there is a latch pin, on the other side there is a loop of a D-shaped or other shape, as well as a number of holes. When fastening, the side with the pin is threaded into the loop and then fixed in one of the holes; By choosing one or another hole, you can adjust the length of the strap. This design is especially suitable for rubber straps, it is simpler and at the same time more reliable than the buckle, which can also be used with such straps.

— Hook-and-loop. Classic hook-and-loop closure, used exclusively with fabric straps. Like magnetic clasps (see above), such clasps allow you to very accurately adjust the length of the strap right in the process of fastening. Among the disadvantages of Hook-and-loop, in addition to restrictions on the materials of the strap, it is worth noting the tendency to reduce reliability as it wears out. Therefore, nowadays, this type of fastener is quite rare, and is almost never used as the only one available — usually Hook-and-loop is supplemented with another option, for example, a latch.

— Folding lock. Clasp in the form of a detachable lock, the halves of which are on different halves of the bracelet. It is used with finely woven metal bracelets, the so-called "Milanese" ones; at the same time, one half is fixed motionless, and the second can move along its part of the bracelet — in this way the length is adjusted. A tool may be required for adjustment, but the procedure itself is simple — much easier than with clips. And the low prevalence of folding locks is mainly due to the fact that Milanese bracelets are rarely found in smart wearable gadgets.
Smart Watch Smart Q100s often compared
Smart Watch Smart Q60 often compared