Battery capacity
The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.
As for the specific values of the nominal capacity, then in models with the lowest performance it is
5000 – 7000 mAh and even
less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The
10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The
20,000 mAh and
30,000 mAh options are also very common. But even a capacity of
40,000 mAh or
more, thanks to the development of modern
...technology, is quite common.Real capacity
The real capacity of the power bank.
Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.
The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.
Battery type
The type of own batteries installed in the power bank.
Lithium-ion(Li-Ion) or
lithium-polymer(Li-Pol) batteries are most commonly used today. Other options are less common — solutions based on
nickel-metal hydride(Ni-Mh) batteries, as well as on LiFePO4 type cells. In addition, a rather promising development has appeared relatively recently — graphene batteries; however, as of early 2021, they are just beginning to be introduced into mass production. Here are the main features of each of these varieties:
— Li-Ion. Lithium-ion technology allows you to create quite capacious batteries of small dimensions and weight. In addition, such elements are easy to use (the main operating parameters are regulated by the built-in controller), have a high charge speed and are practically not affected by the "memory effect" (reduction in capacity when charging an incompletely discharged battery). The main disadvantage of lithium-ion batteries is a rather narrow range of permissible ambient temperatures. This is not a problem in urban usage, when the power bank is used mainly indoors and is carried in a pocket or in a bag; but for less favorable conditions (such as long hikes in the cold season), it is worth choosing models with good thermal insulation. You can also find information that lithium-ion batteries are prone to fires and even explosions; however, this is usually due to
...failures in the embedded controllers, and these controllers are also constantly being improved, and nowadays the risk of such an accident is so low that it can actually be neglected.
— Li-pol. Further development and improvement of the lithium-ion technology described above; the main difference is the use of a solid polymer electrolyte instead of a liquid one (hence the name). This made it possible to achieve even greater capacity without increasing the dimensions, as well as to reduce the potential for fires and explosions during abnormal operation. On the other hand, lithium-polymer batteries are somewhat more expensive than lithium-ion batteries and are even more sensitive to temperature disturbances.
— Ni-Mh. Nickel-metal hydride batteries are distinguished by their reliability and a wide range of permissible temperatures, however, with the same dimensions, they are inferior in capacity to lithium-ion (and even more to lithium-polymer) batteries, and they also require certain specific operating rules to be observed. In addition, it is worth noting that Ni-Mh technology is well suited for removable batteries. It is in this format that such batteries are most often used: power banks of the Ni-Mh format are usually adapters with slots for several replaceable elements of a standard size (for example, AA). In this case, usually, several corresponding removable batteries are included in the kit, however, if desired, they can be replaced with other elements — these can even be disposable batteries from the nearest store. Such an opportunity can turn out to be very useful if the power bank is out of juice at an unfortunate moment, but there is no way to charge it; in addition, worn-out batteries can be replaced with fresh ones without changing the entire device.
— Li-FePO4. Another modified version of the Li-Ion batteries described above, the so-called "lithium iron phosphate". The advantages of such cells over classical lithium-ion ones are, first of all, a stable discharge voltage (until the energy is exhausted), high peak power, long service life, resistance to low temperatures, stability and safety. In addition, due to the use of iron instead of cobalt, such batteries are also safer to manufacture and easier to dispose of. At the same time, they are noticeably inferior to the classic lithium-ion ones in terms of capacity, and they are more expensive, which is why they are rarely used.
— Graphene. Batteries based on graphene — a carbon film one atom thick. The battery itself consists of a set of such films, between which silicon plates are laid, and lithium cobaltate or magnesium oxide is used as an anode. This design provides a number of advantages over the earlier batteries described above. First, graphene technology provides a high charge density, which allows you to create capacious and at the same time light and compact batteries. Secondly, for the production of such batteries, fewer rare resources are needed than for the same lithium ones; and the production itself is more environmentally friendly. Thirdly, such batteries are not prone to overheating and explosions when overloaded or damaged. On the other hand, graphene power supplies take a long time to charge and are not durable. However, this technology is still developing, and in the future it is likely that these shortcomings will be eliminated — completely or at least partially.Power bank charge current via USB
Nominal charge current supported by the power bank when charging its own battery via microUSB, USB type C, or Lightning (see "Battery charging inputs").
This is the maximum and, in fact, the recommended power bank charge current. If the amperes supplied by the power source exceed this value, the charge current will still be limited by the built-in controller to avoid overloading. And using a charger with a lower output current, in turn, will lead to an increase in charging time.
Data on the charge current via USB (Lightning) is especially important due to the fact that modern power banks are usually not equipped with their own chargers for these inputs, and energy sources must be separate. On the other hand, if a high charging speed is not critical for you, you can ignore this parameter: any USB connector is suitable as a power source for the corresponding power bank inputs.
Full charge time
The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.
Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).
It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.
Body material
The main material used in the the body of a power bank.
In addition to traditional
plastic, nowadays, external batteries are produced in cases made of more advanced and/or "prestigious" materials. Of these materials,
aluminium is the most widely used; also you can find products made of
steel, zinc,
leather,
fabric and even
wood. Here are the main features of each option:
— Plastic. The most popular material for the bodies of modern power banks. Plastic, on the one hand, is inexpensive, on the other hand, it is quite durable and has a small weight, on the third hand, it makes it easy to create cases of any shape and colour, which is especially important for devices with an unusual design. In terms of strength and reliability, ordinary plastic is somewhat inferior to metals; however, in everyday use, this difference is not critical — except that scratches on such a case will appear faster. And for extreme conditions, cases can be produced from special impact-resistant plastic.
— Aluminium. Aluminium alloy housings are highly durable and lightweight; in addition, they look stylish, and the appearance is retained for a long time due to scratch resistance. The main disadvantage of aluminium is that it is more expensive than plastic.
...— Steel. Steel is notable for its high durability and reliability; according to these indicators, it surpasses even aluminium, not to mention plastic. On the other hand, this material has a significant weight, and therefore is used much less frequently.
— Leather. Solid body (plastic or metal) with additional leather cover. Such a coating does not affect the functionality and plays a purely aesthetic role: it gives the device a stylish and eye-catching appearance, allowing you to turn the power bank into a stylish accessory. However, note that in the design of such products (especially inexpensive ones), artificial leather (leatherette) is often used, which is noticeably inferior to natural leather in reliability, durability, and sometimes in appearance. Genuine leather, on the other hand, significantly affects the price — its cost can be more than half of the total price of the entire power bank.
— Fabric. A hard case (usually plastic) with a fabric outer covering. Such a coating not only gives the device a rather original appearance, but also gives some practical advantages: the fabric is pleasant to the touch and does not slip in the hand, which reduces the risk of dropping the power bank. On the other hand, various contaminants are poorly removed from such a surface, it has no fundamental advantages over plastic or metal, but it costs much more. Therefore, fabric cases are not very popular.
— Wood. Another design material used mainly for its original appearance than practical advantages. Nevertheless, wood is not inferior to plastic; and some users also consider the natural origin of this material to be an important advantage. On the other hand, wooden cases do not have noticeable advantages over plastic ones, and they cost much more.
— Zinc. Zinc alloys are similar in most properties to the aluminium alloys described above, however, for a number of reasons (in particular, due to the greater complexity in production), they are used extremely rarely.