Dark mode
USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Xiaomi Mi Power Bank 2S 10000 vs Canyon PB-156

Add to comparison
Xiaomi Mi Power Bank 2S 10000
Canyon PB-156
Xiaomi Mi Power Bank 2S 10000Canyon PB-156
Outdated ProductOutdated Product
User reviews
TOP sellers
Main
System of multi-level protection against electrical breakdowns. Low current charging mode. Robust aluminium body.
The "i" version is Indian, the "S" version is international.
Battery capacity10000 mAh15600 mAh
Real capacity6300 mAh
Battery typeLi-PolLi-Pol
Charging gadgets (outputs)
USB-A22
Max. power (per 1 port)18 W
Power output (all ports)15 W
Power bank charging
Power bank charging inputs
microUSB
microUSB
Power bank charge current via USB2 А2 А
Power bank charge power18 W
Full charge time4.2 h10 h
Features
Low current charging
Bundled cables (adapters)
microUSB
microUSB
Features
 
flashlight
General
Body materialaluminiumplastic
Dimensions147x71x14 mm225x111x36 mm
Weight240 g440 g
Color
Added to E-Catalognovember 2018may 2016

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the development of modern...technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

Max. power (per 1 port)

The maximum power that the power bank, theoretically, is capable of delivering to one rechargeable device. Usually, this power is achieved under the condition that no other device is connected to the battery (although exceptions to this rule are possible). And if you have ports with different charging currents or support multiple fast charging technologies, this information is given for the most powerful output or technology.

For modern power banks, a power of 10 watts or less is considered quite low; among other things, it usually means that the device does not support fast charging. Nevertheless, such devices are inexpensive and often turn out to be quite sufficient for simple tasks; Therefore, there are many models with similar specs on the market. The power of 12 – 15 W is also relatively small, 18 W can be called the average level, 20 – 25 W and 30 – 50 W is already considered an advanced level and in some solutions this parameter may exceed 60 W.

In general, higher power output has a positive effect on charging speed, but in fact there are a number of nuances associated with this parameter. Firstly, not only the power bank, but also the gadget being charged should support the appropriate power — otherwise the speed of the process will be limited...by the specs of the gadget. Secondly, in order to use the full capabilities of the power bank, it may be necessary for it to be compatible with certain fast charging technologies (see "Fast Charging").

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

Power bank charge power

The power in watts at which the power bank is charged under normal conditions.

The higher the charging power, the less time it takes to charge (given the same battery capacity). For example, fast charging of a power bank typically means a charging power of 30W or more. However, this parameter does not directly affect compatibility with charging devices: modern portable batteries can work with chargers of both higher and lower power. In the first case, the battery controller will automatically limit the charging current, while in the second case, charging will simply take more time.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Low current charging

Low current charging allows you to seamlessly charge devices that do not require high current. This allows you to extend the life cycle of the devices and protect them as much as possible during charging. Such devices include smartwatches, headphones, headsets, etc.

Features

Additional functions and features provided in the design of the power bank. Such features may include, but are not limited to, an info display, a USB hub mode, a photocell for solar charging, a lighting source ( flashlight or lamp), and a shock -resistant body. Here's a more detailed description of each of these options:

— Info display. Own display installed on the power bank body. As a rule, it has a simple LCD matrix capable of displaying 2 - 3 characters and, in some cases, individual special icons. However, even such a screen provides a lot of additional information, makes it easier to manage the power bank and monitor its status.

— USB hub. Possibility of working as a USB hub (splitter). In this mode, the external battery’s own USB connectors act as USB inputs of a PC or laptop to which the power bank is connected. The connection itself, as a rule, is also carried out using the USB standard, and the battery can be charged. This function is convenient primarily because it allows you to use one USB port simultaneously to charge the power bank and connect a peripheral device (or even several). However, it does not hurt to make sure that the power supply of this port is sufficient to provide all these functions; and the charging speed may be quite slo...w. If the power bank is fully charged, it can also be useful as a classic USB hub: to increase the number of ports available for connecting peripherals, and also as a kind of remote USB extension cable (for example, if there is a free USB port only on the rear panel of the system unit, which is difficult to get to).

- Flashlight. In this case, a flashlight means a built-in light source of relatively low power, usually directional (as opposed to the lamp described below). Such a source performs an auxiliary function; it can be useful, for example, for illuminating the road at night, for short-term illumination in a dark room (basement, cellar), etc.

- Lamp. Built-in light source, usually in the form of an oblong panel of several LEDs; such a panel can be made folding. Unlike flashlights (see above), lamps provide not directional, but diffused light, which has a shorter range, but covers a larger space. Such lighting can be useful, for example, for reading, for illuminating a room during a power outage, and even for creating a certain atmosphere.

- Shock protection. Enhanced protection against impacts and shocks. The specific degree of such protection may vary; it should be clarified according to the official characteristics; however, most models in this category are capable of at least transferring a fall from a height of about 1 - 1.2 m onto a flat hard surface without consequences. Well, in any case, such devices will be more resistant to mechanical stress than conventional ones. It is also worth noting that shock protection in modern power banks is most often combined with protection from dust and moisture (see above), although there are exceptions to this rule.

— Charging from the sun. Possibility of charging the power bank from the sun or other bright light source. To do this, a corresponding device is installed in the body - a solar battery (photocell). This function can be especially useful during a long stay away from civilization - for example, on a hike. And although the efficiency of solar panels in general is not very high, when exposed to bright light for a long time, you can accumulate quite a lot of energy.

Body material

The main material used in the the body of a power bank.

In addition to traditional plastic, nowadays, external batteries are produced in cases made of more advanced and/or "prestigious" materials. Of these materials, aluminium is the most widely used; also you can find products made of steel, zinc, leather, fabric and even wood. Here are the main features of each option:

— Plastic. The most popular material for the bodies of modern power banks. Plastic, on the one hand, is inexpensive, on the other hand, it is quite durable and has a small weight, on the third hand, it makes it easy to create cases of any shape and colour, which is especially important for devices with an unusual design. In terms of strength and reliability, ordinary plastic is somewhat inferior to metals; however, in everyday use, this difference is not critical — except that scratches on such a case will appear faster. And for extreme conditions, cases can be produced from special impact-resistant plastic.

— Aluminium. Aluminium alloy housings are highly durable and lightweight; in addition, they look stylish, and the appearance is retained for a long time due to scratch resistance. The main disadvantage of aluminium is that it is more expensive than plastic.

...— Steel. Steel is notable for its high durability and reliability; according to these indicators, it surpasses even aluminium, not to mention plastic. On the other hand, this material has a significant weight, and therefore is used much less frequently.

— Leather. Solid body (plastic or metal) with additional leather cover. Such a coating does not affect the functionality and plays a purely aesthetic role: it gives the device a stylish and eye-catching appearance, allowing you to turn the power bank into a stylish accessory. However, note that in the design of such products (especially inexpensive ones), artificial leather (leatherette) is often used, which is noticeably inferior to natural leather in reliability, durability, and sometimes in appearance. Genuine leather, on the other hand, significantly affects the price — its cost can be more than half of the total price of the entire power bank.

— Fabric. A hard case (usually plastic) with a fabric outer covering. Such a coating not only gives the device a rather original appearance, but also gives some practical advantages: the fabric is pleasant to the touch and does not slip in the hand, which reduces the risk of dropping the power bank. On the other hand, various contaminants are poorly removed from such a surface, it has no fundamental advantages over plastic or metal, but it costs much more. Therefore, fabric cases are not very popular.

— Wood. Another design material used mainly for its original appearance than practical advantages. Nevertheless, wood is not inferior to plastic; and some users also consider the natural origin of this material to be an important advantage. On the other hand, wooden cases do not have noticeable advantages over plastic ones, and they cost much more.

— Zinc. Zinc alloys are similar in most properties to the aluminium alloys described above, however, for a number of reasons (in particular, due to the greater complexity in production), they are used extremely rarely.
Xiaomi Mi Power Bank 2S 10000 often compared