Dark mode
USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison Parasound 2100 vs NAD C165BEE

Add to comparison
Parasound 2100
NAD C165BEE
Parasound 2100NAD C165BEE
from $900.00
Outdated Product
from $1,250.00 up to $1,430.00
Outdated Product
TOP sellers
Device typepreamplifierpreamplifier
Element basetransistortransistor
Amplifier parameters
Number of channels22
Frequency range10 – 100000 Hz20 – 20000 Hz
Signal to noise ratio105 dB108 dB
Signal to noise ratio (Phono MM/MC)86/78 dB
Harmonic distortion0.008 %0.001 %
Channel sensitivity / impedance
Line input
250 mV
30 kOhm
158 mV
100 kOhm
Phono MM/MC
 
 
2.63/0.15 mV
47 kOhm
REC output
 
0.44 kOhm
Preout
6500 mV
0.06 kOhm
 
0.07 kOhm
Connectors
Inputs
Phono
control input (IR)
Phono
control input (IR)
RCA8 pairs6 pairs
Trigger1 шт
Outputs
Pre-Amp
to subwoofer
control output (IR)
Pre-Amp
to subwoofer
control output (IR)
REC (to recorder)1 pairs2 pairs
Trigger output1 шт1 шт
On headphones3.5 mm (mini-Jack)
Front panel
display
indicators
audio input jack
headphone output
 
indicators
 
headphone output
Features
Adjustments
bass control
treble adjustment
balance adjustment
level adjustment
bass control
treble adjustment
balance adjustment
level adjustment
More features
By-pass/Direct
auto power off
ММ phono stage
MC phono stage
 
external devices control
 
 
ММ phono stage
MC phono stage
additional speaker connect
external devices control
General
Remote control?
PSUinternalinternal
Power consumption10 W21 W
Standby consumption5 W0.8 W
Dimensions (WxDxH)437x369x108 mm135х315х99 mm
Weight5.9 kg6 kg
Added to E-Catalogapril 2014january 2014

Frequency range

The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Signal to noise ratio (Phono MM/MC)

signal-to-noise ratio when the amplifier is driven through the Phono input. This interface is for connecting turntables; its features are described in the “Inputs” section below, and for the meaning of any signal-to-noise ratio, see the corresponding section above.

Harmonic distortion

This indicator describes the amount of non-linear distortion introduced by the amplifier into the processed signal. Such distortions are not necessarily perceived as extraneous noise, but they degrade the quality of the sound anyway — for example, they can make it more deaf. It is almost impossible to avoid them, but it can be reduced to levels inaudible to the human ear.

As a result, the harmonic distortion factor (harmonics) is one of the main parameters describing the overall sound quality in Hi-Fi and Hi-End amplifiers. The lower it is, the clearer the sound. Hundredths of a percent are considered a good indicator for modern amplifiers, thousandths and below are excellent. The exceptions are tube and hybrid models, for which rather high harmonic coefficients are allowed; see "Element base" for more details.

Line input

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the RCA line input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.

Phono MM/MC

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the Phono MM/MC input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.

REC output

The signal level and dynamic resistance (impedance) at the REC output provided in the amplifier.

This output is intended for connection to a recording device. For details, see "REC (to a recording device)"; here we note that the output signal level must be no less than the input sensitivity of the connected device, otherwise the recorded sound will turn out to be too quiet.

The design of modern amplifiers is such that this parameter primarily determines how efficiently the entire circuit works with a low-resistance load: the lower the output impedance, the easier it is to provide the necessary power at such a load. The standard value today is actually 1 kΩ (at 1 kHz); this, usually, is sufficient for most tasks solved by Hi-Fi and Hi-End class amplifiers. The need for other values arises only in special cases; for their description it is worth referring to specialized sources.

The features of the REC output are described in detail in "REC (to a recording device)" below.

Preout

Signal level and dynamic impedance provided by the device at the preamplifier output (see "Outputs" for details).

The signal level must not be lower than the sensitivity of the power amplifier (see "Type") to which the signal is received — otherwise the power amplifier will not be able to provide a normal signal level already at its outputs.

Dynamic resistance (impedance) of the preamplifier output. This value is exactly the same as the input impedance of the REC output — see the relevant paragraph above. For more information about the exit itself, see "Exits".

RCA

The number of line inputs in the amplifier design using the RCA interface. Unlike the Main input (see above), which can work with the same connectors, when connected to a linear RCA, the signal goes through all the stages of processing provided for in the amplifier — for example, adjusting the balance or frequencies (see "Adjustments"), etc. .P.

See “Amplifier Input (Main)” for details on the connector itself. Here we note that when using RCA as a linear interface, a pair of such connectors is considered one input. This is due to the fact that only one channel can be transmitted over one coaxial cable, so a pair is needed to work with stereo sound.

The number of signal inputs (of any type) determines how many signal sources can be simultaneously connected to the amplifier. Accordingly, it is worth choosing a model according to the number of inputs, taking into account the expected number of such sources: after all, it is easier to connect them all and select them through the amplifier’s remote control or control panel than to fiddle with reconnecting every time.
NAD C165BEE often compared